APPLIED HYDROLOGY

(HI-505)

Self Introduction

Name: Habib-ur-Rehman

Qualification:

B.Sc.: Civil Engineering, UET, Lahore

(1991)

M.Sc.: Structural Engineering, UET, Lahore

(1996)

Ph.D.: Hydrology & WRE, UOT, Japan

(2001)

Work Experience:

Lecturer: 1991-1996

Assistant Professor: 1996-2001

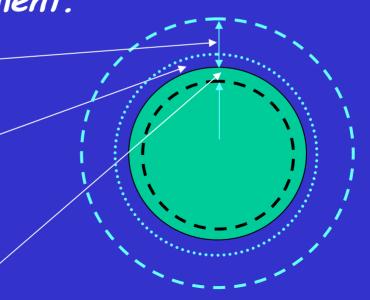
Associate Professor: 2001-2004

Professor: 2004-To date

Head of Division: 2009-To date

Student's Introduction

Subject Introduction


Hydrology:

- (1) Scientific Study of Hydrological Cycle.
- (2) Branch of Science which deals with the occurrence, distribution, movement and properties of waters on, under & over the earth's surface with their relations to the environment.

Atmosphere (approx. 50 km)

Troposhere/Hydrosphere (approx. 15 km)

Lithospere (approx. 1 km)

Global Water Volumes

```
Atmosphere: 12900 Km³ (0.001 % of T.W., 0.5% of volume of atmosphere)
```

```
Troposphere: 12900 Km3 (100 % of A.W.)
```

Lithosphere: 23.4 x 106 Km3 (0.017 % of T.W.)

Rivers: 2120 Km3 (0.0002 % of T.W.)

Oceans: 1338 x 106 Km3 (96.54 % of T.W.)

Total Global Water: 1385.98 x 10⁶ Km³ (0.02% of Planet Mass)

Global Water Volumes

S.#	Item	Area, 10 ⁶ (km²)	Volume (km³)	Percent of Total Water	Percent of Fresh Water
1	Oceans	361.3	1 338 000 000	96.5	
2	Ground Water:				
	Fresh	134.8	10 530 000	0.76	30.1
	Saline	134.8	12 870 000	0.93	
3	Soil Moisture	82.0	16 500	0.0012	0.05
4	Polar Ice	16.0	24 023 500	1.7	68.6
5	Other Ice and Snow	0.3	340 600	0.025	1.0
6	Lakes:				
	Fresh	1.2	91 000	0.007	0.26
	Saline	0.8	85 400	0.006	
7	Marshes	2.7	11 470	0.0008	0.03
8	Rivers	148.8	2 120	0.0002	0.006
9	Biological Water	510.0	1 120	0.0001	0.003
10	Atmospheric Water	510.0	12 900	0.001	0.04
	Total Water	510.0	1 385 984 610	100	
	Fresh Water	148.8	35 029 210	2.5	100

Source: Applied Hydrology by Ven Te Chow, 1988

Subject Introduction (cond.)

Applied Hydrology:

Branch or aspect of hydrology pertinent to planning, design and operation of engineering projects for the control and use of water.

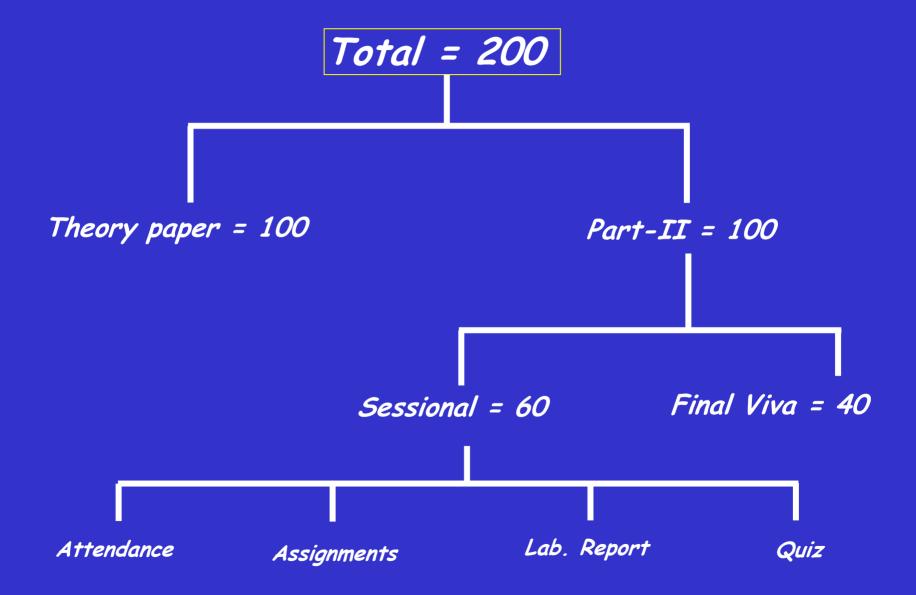
(application of hydrology for a particular project)

Scope / Significance of Hydrology

- (1) Water, the basic need for the sustenance of human life.

 Drinking, agriculture and industry
- (2) To cope with the extreme hydrological conditions. Floods & droughts
- (3) Flow Availability at a site.
- (4) Input data required for the design of Hydraulic Structures.

 Design Flows & Design Floods
- (5) Food Habits

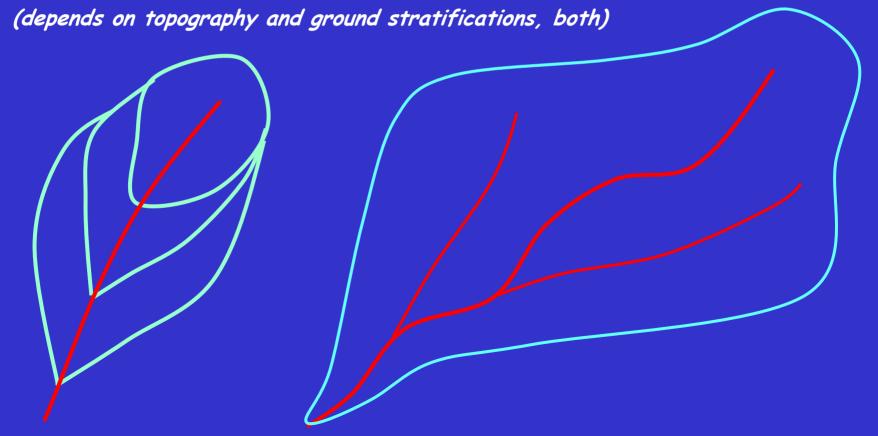

 Rice & Wheat
- (6) Regional Classification.

 Arid, Humid and Semi arid
- (7) Flood Forecasting
- (8) Ground Water reserves and its fluctuations etc.
- (9) Water Resources Planning
- (10) Impact of Climate Change and land-use change on WRs.
- (11) To maintain Urban Hydrological Balance.

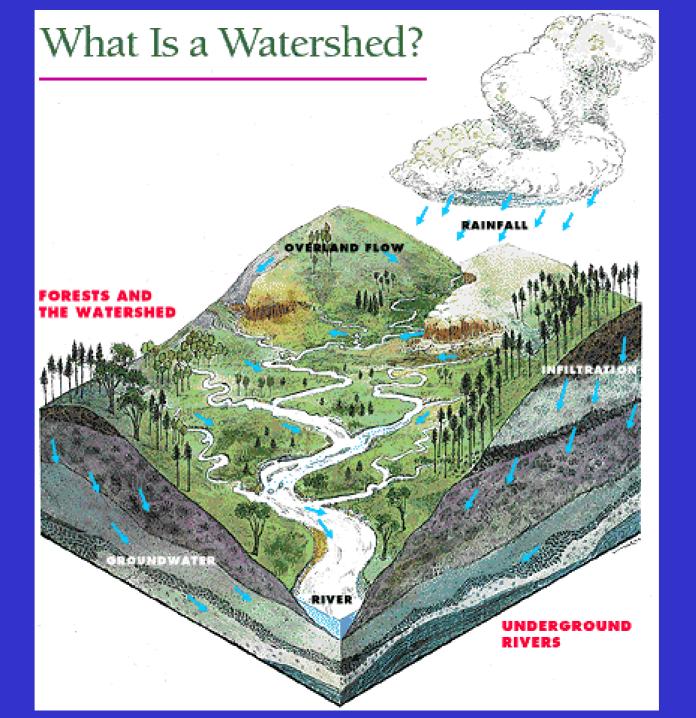
Text Books

- (1) Applied Hydrology by Vent Te Chow, David R. Maidment, Larry W. Mays.
- (2) Hand Book of Hydrology by Maidment.
- (3) Engineering Hydrology by K. Subramanya.
- (4) Introduction to Hydrology by Warren Viessman Jr. Gary L. Lewis, John W. Knapp.

Marks Distribution

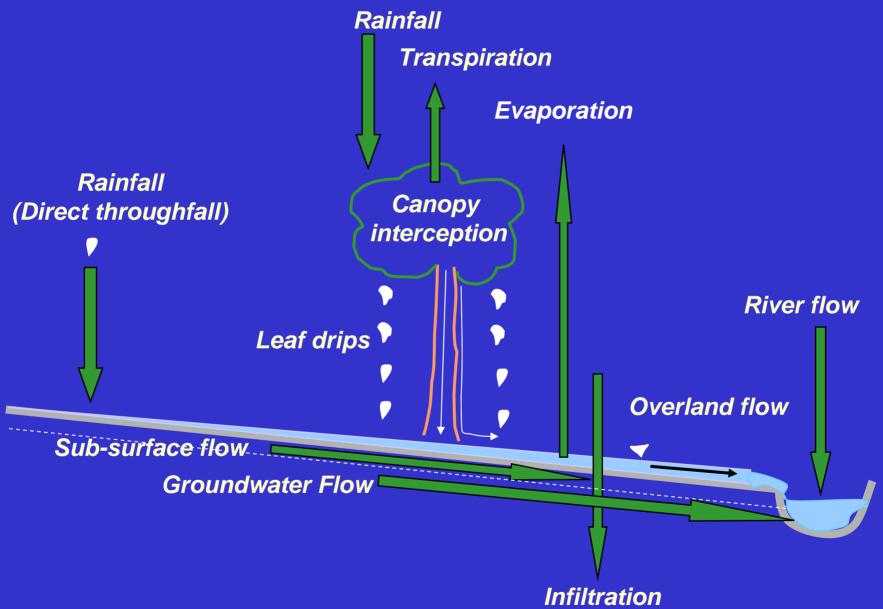

Watershed & Catchment

Watershed:


Total area of land draining at a particular section of the stream / river due to surface runoff only. (depends on topography only)

Catchment:

Total area of land draining at a particular section of the stream / river due to surface runoff and sub-surface runoff.



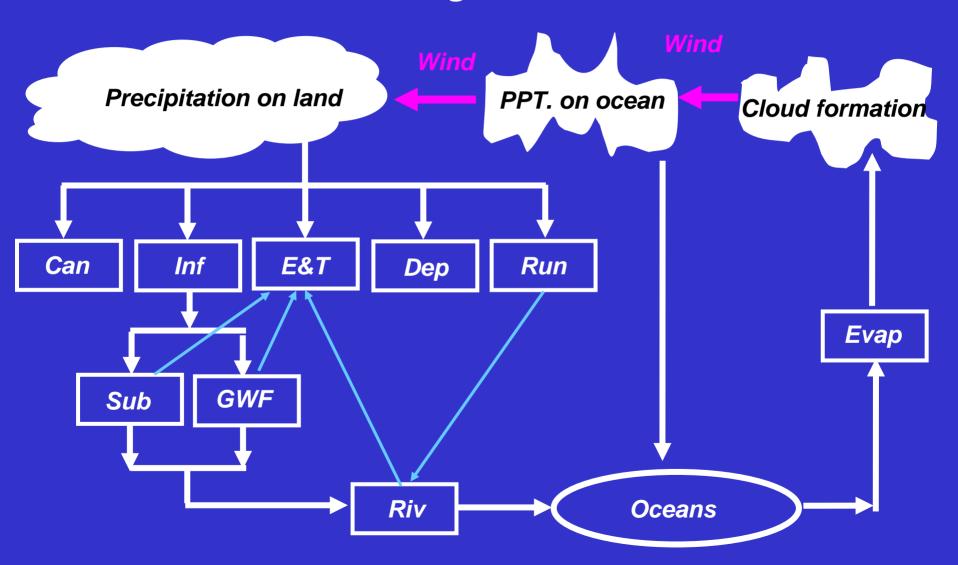
Hydrological Processes

- (1) Precipitation
- (2) Canopy Interception
- (3) Evaporation
- (4) Infiltration
- (5) Transpiration
- (6) Depression Storage
- (7) Surface Runoff
- (8) Glacier melting
- (9) Snow melting
- (10) Sub-surface Flow
 - (Flow in unsaturated zone)
- (11) Ground Water Flow
 - (Flow in saturated zone)
- (12) River Flow

Hydrological Processes

Course Outlines

Lecture No.	Topics	Seminar
1	Introduction, Hydrological Cycle	
2	Global Hydrology (Water & Heat Balance)	
3	Precipitation	
4	-do-	
5	Evapotranspiration	
6	-do-	
7	Canopy Interception, Infiltration	
8	-do-	
9	Experiment on Infiltrometer	


Course Outlines (cond.)

Lecture No.	Topics	Seminar
10	Ground Water Flow	
11	-do-	
12	Hydrological Modelling	
13	Hyd. Modelling, Governing equations	
14	Experiment of Rainfall - Runoff	
15	Introduction to HEC-HMS	
16	Flood Frequency Analysis & PMF	
17	-do-	
18	Practice for HYFA + Quiz	

Hydrological Cycle

- □ No beginning, no end
- □ Continuous Cycle
- □ Law of conservation of mass
- □ For Civil Engineers, most useful is runoff
- □ Sun is the main source of energy
- □ Winds are the main source of cloud transportation
- □ Ocean is the main source of water

Flow Chart for Hydrological Cycle

