

Geotechnical Engineering–II *BSc Civil Engineering – 5th Semester*

Lab # 3

by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/forum/#!forum/geotech-ii

SOIL STRENGTH

<u>SOIL</u>

- Mostly loaded in *compression*
- But fails mostly in *shear*

SHEAR STRENGTH OF SOIL

Mohr-Coulomb Failure Envelope

Simplest approximation of soil shear strength

 $\tau_f = c + \sigma \tan \phi$

- $\tau_{\rm f} = shear \ strength$
- c = cohesion
- σ = normal stress
- $\varphi = angle of internal friction$

SHEAR STRENGTH - LAB DETERMINATION -

- 1. Direct shear test
- 2. Unconfined compression test
- 3. Triaxial compression test

<u>Direct Shear Test</u>

- Relatively simpler
- Quick
- Mostly used for granular soils

DIRECT SHEAR TEST - Schematic Illustration -

 $\tau_f = c + \sigma \tan \phi$

DIRECT SHEAR TEST - Specimen Preparation -

Components of Shear Box

Preparation of Sand specimen

DIRECT SHEAR TEST - Specimen Preparation -

Pressure plate

Leveling the top surface of specimen

Specimen preparation completed

- Test Procedure -

Step 1: Apply a vertical load to the specimen and wait for consolidation

- Test Procedure -

Step 2: Lower box is subjected to a horizontal displacement at a constant rate

Dial gauge to measure vertical displacement

Loading frame to apply vertical load

Shear Box

Proving ring to measure shear force

Dial gauge to measure horizontal displacement DIRECT SHEAR TEST
- Calculations -

$$\tau_f = c + \sigma \tan \phi$$

 $\sigma = \text{Normal stress} = \frac{\text{Normal force (P)}}{\text{Cross - sectional Area of sample}}$

 $\tau = \text{Shear stress} = \frac{\text{Shear resistance developed at the sliding surface (F)}}{\text{Cross - sectional Area of sample}}$

Cross-sectional area of the sample changes with the horizontal displacement

$$A_C = A_o - B.\Delta h$$

 $A_c = Corrected Area$

- $A_0 = Original Area$
- B = Width

 Δh = Sample Deformation

- Calculations -

Sample # 2			Sample Calculations
			*
DDG constant	=	0.01 mm/div	
Proving Ring constant	=	0.81b/div	
Weight of Hanger	=	8 lb 15 ounce	
	=	8.941b	
Normal Load	=	201b	
Total Normal Load	=	28.94lb	

Sample #	Normal Load, N	Horizontal D/R	Horizontal Displacement, ∆H Col#3×L.C	Corrected Area, Ac =A₀-b∆H	Load Dial Reading	Horizontal Shear Force, F Col#6×PRC	Normal Stress, σ _n =N/A _C	Shear Stress, T=F/A _C
	(lb)		(mm)	(mm ²)		(lb)	(kN/m^2)	(kN/m^2)
1	2	3	4	5	6	7	8	9
2	28.94	0	0.0	36.00	0.0	0.0	35.77	0.00
	28.94	20	0.2	35.88	17.0	13.6	35.89	16.87
	28.94	40	0.4	35.76	21.0	16.8	36.01	20.91
	28.94	60	0.6	35.64	23.0	18.4	36.13	22.97

DIRECT SHEAR TEST - Analysis of Results -

$$\tau_f = c + \sigma \tan \phi$$

How to determine shear strength parameters c and ϕ ?

CONCLUDED