

Design of Structures

Use of Computer for construction of charts

- Set up an excel worksheet
- Enter steel ratios starting from ρ_{min} to ρ_{max} with a suitable interval in Column A
- For a given set of materials, Obtain the value of *R* in Column B
- Same can be repeated for same f_{ij} and another value of f_{ij}
- Plot an XY Chart with appropriate grids and titles

Design of Structures

Use of Charts (1)

To find the Capacity of Section when Section & Material Properties , Steel Area are known

- 1. Obtain $\rho = A_s/bd$
- 2. Enter Appropriate Chart, read R for above ρ
- 3. $\phi M_n = Rbd^2$

Design of Structures

Use of Charts (2a)
To find the Steel Area when Section & Material Properties are Known
1. Obtain $R=M_u/bd^2$ 2. Enter Appropriate Chart; read ρ for above R 3. $A_s=\rho bd$
Design of Structures

Use of Charts (2b)	
To find the Steel Area when only Material Properties are Known	
1. Select a ρ around 50% of given range	

- 2. Read R from Chart
- 3. $bd^2 = M_u/R$
- 4. Decide b from other consideration, get d
- 5. Obtain h, round d and get A_s as in (2a)

Design of Structures

DESIGN OF T SECTIONS

If $a < h_f$, the section may be designed as rectangular sections with $b=b_f$

Therefore the design charts and methods for Rectangular Beams are applicable

When $a > h_f$, T section design will be carried out using R_T charts

Design of Structures

Construction of R_T Charts $A_{pf} + A_w = A_c$: Concrete Area $A_s = A_{sf} + A_{sw}$: Steel Area for flange, Web $0.85f_ch_f(b_f - b) = A_{sf}f_y$ $\frac{A_{sf}}{h_f(b_f - b)} = \Omega = \frac{0.85f_c}{f_y} = \frac{A_{sff}}{h_f b_f}$ Ω is function of material properties only Design of Structures

Design of T Sect	ion
if $\phi M_{ff} < M_u$ obtain ϕM_{pf} $\frac{h_f}{d} \Rightarrow \frac{\phi M_f}{Ad} = R_T$ (from Chart) $\phi M_{pf} = R_T \times (b_f - b)h_f d$ $A_{sf} = \frac{0.85f'_c}{f_y}(b_f - b)h_f$	
	Design of Structures

Capacity of T Section
Determine A_{sf} (Steel for projected flange)
$A_{sf} = \Omega \times (b_f - b) h_f$
$=\frac{0.85\times20}{280}250\times125=1897mm^2$
Determine ϕM_{pf} (Cap of projected flange)
$\frac{h_f}{d} = \frac{125}{500} = 0.25 \Longrightarrow R_T = 13.48$
$\phi M_{pf} = 13.48 \times 500 \times 125 \times 250 = 210.625 kN-m$
Design of Structure

Capacity of T Section	
Determine A_{sw} (Steel for Web)	
$A_{sw} = A_s - A_{sf} = 5000 - 1897 = 3103 mm^2$	
Determine ϕM_w (Cap of Web by R Charts)	
$\rho = 3103/500/250 = 0.0248 \Longrightarrow R = 5$	
$\phi M_w = 5 \times 250 \times 500^2 = 312.5 k N - m$	
$\varphi_{M_n} = \varphi_{M_{pf}} + \varphi_{M_w} = 525.15 \text{ k/v} - \text{m}$	
Design of Structure	res

Design of T Section
Determine A_{sf} (Steel for projected flange)
$A_{sf} = \Omega \times (b_f - b) h_f$
$=\frac{0.85\times20}{280}250\times125=1897mm^2$
Determine ϕM_{pf} (Cap of projected flange)
$\frac{h_f}{d} = \frac{125}{500} = 0.25 \Longrightarrow R_T = 13.48$
$\phi M_{pf} = 13.48 \times 500 \times 125 \times 250 = 210.625 kN-m$
Design of Structure

END of PART I