Table of contents

1. CROP WATER REQUIREMENT: 5
1.1. Area Identification: 5
1.1.1. Gross Command Area (GCA) 5
1.1.2. Culturable Command Area (CCA) 5
1.1.3. Non Culturable Command Area (NCCA) 5
1.1.4. Chak Bandi 5
1.2. Alignment of Irrigation Channels: 5
1.2.1. Alignment of canals and distributory 5
1.2.2. Alignment of water course 6
1.3. Deciding the cropping pattern 7
1.3.1. Cropping pattern 7
1.3.2. Croping Intensity/cultivation intensity 7
1.3.3. Factors Effecting Cropping Pattern: 7
1.4. Important definitions 7
1.4.1. Crop Water Requirement: 7
1.4.2. Consumptive Use: 7
1.4.3. Estimation of Consumptive Use: 8
1.4.4. Factors influencing crop water requirements 8
1.4.5. Conveyance Losses: 8
1.4.6. Crop Period: 9
1.4.7. Base Period: 9
1.4.8. Delta of a crop: 9
1.4.9. Rabi Season (October to March): 9
1.4.10. Kharif Season (April to September): 9
1.4.11. Indicative Values of the Total Growing Period 10
1.4.12. Duty of a Crop: 10
1.4.13. Full Supply Factor: 10
1.4.14. Intensity of Irrigation: 10
1.4.15. Water Allowance: 10
1.4.16. Discharge Statement: 10
1.4.17. Water Conveyance Efficiency: 11
1.4.18. Potential Evapotranspiration $\left(\mathrm{ET}_{\mathrm{o}}\right)$ 11
1.4.19. Reference Crop: 11
1.4.20. The 'bulk' surface resistance 11
1.4.21. Actual crop Evapotranspiration ($\mathrm{ET}_{\text {crop }}$): 11
1.4.22. Crop Coefficient (Kc): 11
1.5. Estimation of crop water requirements: 12
1.5.1. No. of outlets: 14
2. CAPACITY STATEMENT: 15
2.1. Divide the whole area into outlet command areas, location of each outlet in the scheme. Show Alignment of canals and water courses. 15
2.2. Design discharge for outlets 15
2.3. Measurement of Seepage losses: 16
3. DESIGN OF OUTLETS, DESIGN OF CANALS IN REACHES, DESIGN OF WATER COURSES 20
3.1. Design of canals in reaches: 20
3.2. Design of watercourses: 21
3.3. Typical Cross-sections of canals at start, mid, end, cross-section of water course. 21
3.3.1. Cross-section of water course: 21
3.3.2. Longitudinal Section of canal showing FSL, BL and NSL 21
4. COMMAND STATEMENT: 24
5. PREPARATION OF WARABANDI FOR AN OUTLET CHAK: 26
5.1. Definition and brief description: 26
5.2. Warabandi Management System: 26
5.3. Objectives of Warabandi: 27
5.4. Types of Warabandi: 27
5.4.1. Official Warabandi: 27
5.4.2. Agreed Warabandi: 28
5.4.3. Actual Warabandi 28
5.5. Two types of warabandi are frequently mentioned in Pakistan 28
5.5.1. Kachcha (ordinary or unregulated) Warabandi: 28
5.5.2. Pucca Warabandi: 28
5.6. Benefits of Warabandi: 29
5.7. Formulation of Warabandi: 29
5.8. Warabandi Schedule: ... 30
5.9. Comments on Warabandi from Field Experience: ... 30

1. CROP WATER REQUIREMENT:

Various steps for planning the irrigation system for an area

1. Area identification, GCA, CCA, NCCA.
2. Alignment of canals, distributaries and water-course
3. Deciding the cropping pattern.
4. Important definitions
5. Estimation of crop water requirements.

1.1. AREA IDENTIFICATION:

1.1.1. Gross Command Area (GCA)

It is the area which is bounded within irrigation boundary of a project, which can be economically irrigated without considering the limitation of the quantity of irrigation water. It also includes the area which cannot be cultivated e.g. villages, roads, utility etc.

It is total area used for design consideration. This may be cultivated or non-cultivated area depending upon the condition and topography.

1.1.2. Culturable Command Area (CCA)

It is the effective area which is culturable or the area that is cultivated out of total command area.

1.1.3. Non Culturable Command Area (NCCA)

It is the area which is not cultivated.

CCA=GCA-Non Culturable Command Area

1.1.4. Chak Bandi

It is to divide the whole CCA into command area of each outlet.

1.2. ALIGNMENT OF IRRIGATION CHANNELS:

The alignment of irrigation channels can be divided into two parts, namely
(a) Alignment of canals and distributory.
(b) Alignment of water course.

1.2.1. Alignment of canals and distributory

i) The canals and distributaries should be aligned in such a manner that the entire tract (land) should be irrigated by flow-irrigation. In order to achieve this objective and also to cut down cost in construction channels should be aligned along ridges. If this fact is overlooked the channel will run through filling which will not only entitle higher cost but will also jeopardize the area with water logging.
ii) Unless otherwise specified by higher authority, the contour plan with scale 2 " to a mile and having contour at 5 ' interval should be used for studying the alignment of canals and distributory. The contour plan should be studied thoroughly and different proposals should be marked on plan and their merits and demerits should be weighted. The most economical and practical should be adopted.
iii). Care should, however be taken that the irrigation channel do not cross the drainage system of the area.
iv). Obstacles, such as roads, towns, railway lines, canals etc should be avoided.
v). An irrigation channel should not as far as possible cut an area which is irrigated by wells.
vi). The main as well as branch canals are carrier canals, and so no direct irrigation should be done from them.
vii). The main channel should be split into moderate sized branch canals and the splitting point should be so located that maximum area is irrigated economically.
viii). The distributaries should be so aligned that length of a water course taking off from it should in no case exceed two miles.
ix). Effort should be made to keep the channel straight. When it is not possible, the minimum radii of curves should be kept as follows;

Capacity of Channel (Cusecs)	Minimum Radii of curves (feet)
Over-3000	5000
$3000-1000$	3000
$1000-500$	2000
$500-100$	1000
$100-10$	500
Less than 10	300

x). As maintenance cost of a distributory is inversely proportional to its discharge, large sized distributaries are better than small ones.

1.2.2. Alignment of water course

i). The alignment of a water course unless otherwise directed by the higher authorities, should be studied on a plans having a scale of 8 " to a mile and showing spot levels at every corner of 500 ft .
ii). A water course should be minimum in length.
iii). As far as possible a water course should be aligned within one square. i.e 25 acres $\mathbf{(9 9 0 \times 1 1 0 0}), \mathbf{1}$ hectare $=\mathbf{2 . 4 7}$ acres iv). In order to reduce absorption losses, a water course should irrigate on its both sides.
v). Ordinarily only one nakka is sanctioned for each watercourse. But where the configuration of ground does not admit of one nakka, a second may be provided.

1.3. DECIDING THE CROPPING PATTERN

1.3.1. Cropping pattern

It means how many crops and how much area for a crop is being cultivated.

1.3.2. Cropping Intensity/cultivation intensity

It is the \%age of area of a particular crop with respect CCA.

1.3.3. Factors Effecting Cropping Pattern:

$>$ Climate
$>$ Soil Characteristics
$>$ Hydrology
> Water Allowance
$>$ Crop Water Requirements
> Intensity of Cropping and Irrigation
$>$ Farmer's Requirements for Food, Fodder Clothes Etc.

1.4. IMPORTANT DEFINITIONS

1.4.1. Crop Water Requirement:

It is the total amount of water required by the crop in a given period of time for normal growth, under field conditions. It includes evaporation and other unavoidable losses. It is normally expressed in terms of depth of water and associated with the area of crop.

Crop water requirement $=$ Consumptive use + Seepage Losses in the field + Others $($ water need for land preparation)

1.4.2. Consumptive Use:

It is the amount of water required by a crop for its vegetated growth to evapotranspiration and building of plant tissues plus evaporation from soils and intercepted precipitation. It is expressed in terms of depth of water.

Consumptive use varies with temperature, humidity, wind speed, topography, sunlight hours, method of irrigation, moisture availability.

1.4.3. Estimation of Consumptive Use:

1. Direct method
2. Pan evaporation method
3. Empirical method

1.4.4. Factors influencing crop water requirements

i. Effect of Major Climatic Factors on Crop Water Needs

Climatic factor	Crop water need	
	High	Low
Sunshine	Sunny (no clouds)	cloudy (no sun)
Temperature	hot	cool
Humidity	low (dry)	high (humid)
Wind speed	windy	little wind

ii. Influence of crop type on crop water needs

The influence of the crop type on the crop water need is important in two ways.

1. The crop type has an influence on the daily water needs of a fully grown crop; i.e. the peak daily water needs of a fully developed maize crop will need more water per day than a fully developed crop of onions.
2. The crop type has an influence on the duration of the total growing season of the crop. There are short duration crops, e.g. peas, with a duration of the total growing season of 90-100 days and longer duration crops, e.g. melons, with a duration of the total growing season of 120160 days. There are, of course, also perennial crops that are in the field for many years, such as fruit trees.

1.4.5. Conveyance Losses:

Take place from barrage to the field (outlet). So design should be according to requirement of water plus losses.

Major loss of water in an irrigation channel is due to absorption, seepage or percolation and evaporation. In earthen channels losses due to seepage are much more than the losses due to evaporation. The absorption losses depend upon following:
> Type of soil
$>$ Subsoil water
$>$ Age of canal
$>$ Position of FSL w.r.t to NSL
$>$ Amount of Silt carried by canal
$>$ Wetted perimeter

1.4.6. Crop Period:

It is the time normally in days that a crop takes from the instance of its sowing to harvesting.

1.4.7. Base Period:

is the time in days between the first watering and last watering to the crops before harvesting.
Note: Base Period is normally less than the crop period depending upon the type of crop.

1.4.8. Delta of a crop:

Total depth of water required by the crop in unit area during base period. In other words it is the total depth of water required for maturing the crop.

$$
\text { Volume }=\text { Depth } x \text { Area. }
$$

Now to get the total amount of water for crops (i.e water for Kharif and Rabi crops) add water for each crop individually as

$Q=$ Volume/Time

1.4.9. Rabi Season (October to March):

Crop Consumptive Use (cm)
Wheat
37
Gram 30
Barley 30
Potato 60-90
Sugar cane 90
Fodder 40
Oil seed 45
Berseen
70
1.4.10. Kharif Season (April to September):
Crop
Consumptive Use (cm)

Cotton 25-40
Maize 45
Rice 125-150
Sugar Cane
90

1.4.11. Indicative Values of the Total Growing Period

Crop	Total growing period (days)	Crop	Total growing period (days)
Barley/Oats/ Wheat	$120-150$	Millet	$105-140$
Bean, green	$75-90$	Onion, green	$70-95$
Citrus	$240-365$	Pepper	$120-210$
Cotton	$180-195$	Sorghum	$90-150$
Grain/small	$150-165$	Soybean	$120-130$
Lentil	$150-170$	Squash	$135-150$
Maize, sweet	$80-110$	Sunflower	$125-130$
grain	$125-180$		

1.4.12. Duty of a Crop:

It is the area irrigated in hectors by one cumecs or area irrigated in acres by one cusecs.

1.4.13. Full Supply Factor:

From the statistical records for different projects in operation, duty is determined. The Base periods are Rabi (Winter Crop) and Kharif (Summer Crop). By comparing the tract (land) to be irrigated with those already under irrigation and by studying other relevant factors which affect the duty, a fair guess of it for new project is made. The term duty is only used for existing or running projects, but in a proposed project it is known as full supply factor.

1.4.14. Intensity of Irrigation:

It percentage of culturable area irrigated during a base period or annually.

1.4.15. Water Allowance:

This is the amount or discharge in cusec required to irrigate 1000 Acres of an area.

Water Allowance=EQx1000/CCA

1.4.16. Discharge Statement:

This gives the information of discharge at every point/section of the canal.

1.4.17. Water Conveyance Efficiency:

It is the ratio of the water delivered to the farmer by conveyance system to the water introduced into the canal at source.

1.4.18. Potential Evapotranspiration ($E^{\mathbf{o}} \mathbf{0}$)

The highest rate of evapotranspiration (ET) by a short and actively growing crop or vegetation with abundant foliage(leafage) completely shading the ground surface and abundant soil water supply under a given climate.

1.4.19. Reference Crop:

An idealized grass crop with crop height of 0.12 m , albedo (reflected/incoming solar radiations on earth) of 0.23 , and a surface resistance of $69 \mathrm{sm}^{-1}$.

1.4.20. The 'bulk' surface resistance

It describes the resistance of vapour flow through the transpiring crop and evaporating soil surface. Where the vegetation does not completely cover the soil, the resistance factor should indeed include the effects of the evaporation from the soil surface. If the crop is not transpiring at a potential rate, the resistance depends also on the water status of the vegetation

An extensive surface of short green grass cover of uniform height, actively growing, completely shading the ground and no water shortage resembles the reference crop.

1.4.21. Actual crop Evapotranspiration ($\mathbf{E T}_{\text {crop }}$):

Rate of evapotranspiration by a particular crop in a given period under prevailing soil water and atmospheric conditions.

Usually calculated by multiplying the Crop Coefficient (Kc) for the period with $\mathrm{ET}_{\mathrm{rc}}$: thus

$$
E T_{\text {crop }}=K . E T_{r c}
$$

1.4.22. Crop Coefficient (Kc):

it is the ratio b / w the reference crop Evapotranspiration to the actual crop evapotranspiration.
$\mathrm{Kc}=\mathrm{ETo} / \mathrm{ETc}$
It determined experimentally for various crops, Etc is determined by Lysimeter technique and ETo by USWB class A evaporation pan.

Kc is different for different crop and for different crop growth stages. Mainly affected by crop type, soil type and climate of the area.

Rabi Discharge $=\operatorname{Qr}=\Sigma \mathrm{Vr} /$ rabi period $($ days $) \quad\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$
Rabi Discharge $=Q k=\Sigma \mathrm{Vk} /$ kharif period (days) $\quad\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$
Design discharge $=$ larger of Qr ans Qk

1.5. ESTIMATION OF CROP WATER REQUIREMENTS:

Gross Command Area	$=521843.08$ acres
Non Culturable Command Area	$=178.51 \mathrm{acres}$
Culturable Command Area	$=477732.29 \mathrm{acres}$

Given Data			
Months	Epan	Ep	20\% effective Ep
	$\mathbf{c m}$	$\mathbf{c m}$	$\mathbf{c m}$
	1.5	2.5	0.5
February	1.8	3	0.6
March	4.5	4.4	0.88
April	17.1	2	0.4
May	24	2.5	0.5
June	22.5	4	0.8
July	19.5	20	4
August	11.1	16	3.2
September	12.3	6	1.2
October	7.5	1.5	0.3
November	7.2	0.8	0.16
December	4.2	1.2	0.24

Required Discharge in Both Seasons			
Season	Volume* *	Time	Qr
	$\mathbf{f t}^{\mathbf{3}}$	Sec	$\mathbf{f t 3 / s}$
Rabi Season	15406457616	15811200	974.40
Kharif Season	42280956432	15724800	2688.81
*Acre -ft to ft3 conversion = 1 Acre ft = 43560 ft3			

Description	Values	Units
Total Days in Rabi Season	183	Days
Total Days in Kharif Season	182	Days
Design Discharge	2688.81	Cusecs
Field losses (5\%)	134.44	Cusecs
Total Discharge required	2823.25	Cusecs
Water Allowance*	5.91	Cusecs/1000Acres
Water course capacity, Q_{d}	3	Cusecs
CCA of each Outlet**	507.61	Acre
Number of Outlets***	941	

$$
\begin{aligned}
& * \text { Water Allowance }=\frac{Q_{D} \times 1000}{C C A} \\
& * * \text { CCA of outlet }=\frac{Q_{d} \times 1000}{W A} \\
& * * * \text { No. of outlets }=\frac{\text { Total CCA }}{\text { CCA of each outlet }}
\end{aligned}
$$

1.5.1. No. of outlets:

Total area to be irrigated by minor canal having length of water course $=2 \mathrm{~km}$ on one side $=$ 11576.87 acres

As,
5.91 cusecs is required for 1000 acres
$5.91 / 1000$ cusecs is required for 1 acre
$5.91 * 11576.87 / 1000$ cusecs will be required for 11576.87 acres
Hence, for $\mathbf{1 1 5 7 6 . 8 7}$ acres, $\mathbf{6 8 . 4 2}$ cusecs discharge will be required.
As,
3 cusecs discharge is served by 1 outlet
1 cusec discharge will be served by $1 / 3$ outet
68.42 cusecs discharge will be served by $1 * 68.42 / 3$ outlets

Hence, for $\mathbf{6 8 . 4 2}$ cusecs discharge, $\mathbf{2 3}$ outlets are required on one side.

2. CAPACITY STATEMENT:

2.1. DIVIDE THE WHOLE AREA INTO OUTLET COMMAND AREAS, LOCATION OF EACH OUTLET IN THE SCHEME. SHOW ALIGNMENT OF CANALS AND WATER COURSES.

According to the CCA of each outlet, divide the whole irrigation scheme into no. of blocks (small areas) and the show the proposed alignment of canals and watercourses on the contour map of the area keeping in mind the following points:

- The area commanded by each outlet should be irrigated under gravity flow.
- The length of water courses should not be more than 3 Km or 2 miles.
- Minimum idle length of canals in the system.

Based on these conditions, the area allocated for each outlet may be altered and hence the no. of outlet calculated at the start will be different from what are being actually provided in the distribution scheme.

2.2. DESIGN DISCHARGE FOR OUTLETS

Discharge of each outlet is calculated based on its actual area served plus the conveyance losses in the water course (take 10-15\%).

Conveyance Losses: Take place from barrage to the field. So design should be according to requirement of water plus losses.

Major loss of water in an irrigation channel is due to:
Seepage (absorption or percolation), mainly absorption losses, vary from 2-50\% of canal diversions

Evaporation, vary from 2-3\%
In earthen channels losses due to seepage are much more than the losses due to evaporation. The absorption losses depend upon following:
$>$ Type of soil
$>$ Subsoil water
$>$ Age of canal
> Position of FSL w.r.t to NSL
$>$ Amount of Silt carried by canal
$>$ Wetted perimeter

According to irrigation branch of West Pakistan:

$$
K=5.0 Q^{0.625}
$$

$\mathrm{K}=$ absorption loss per million square feet of wetted perimeter
$\mathrm{Q}=$ Discharge in channel.

According to lacey:

$$
Q_{A}=0.0133 L Q^{0.5625}
$$

$\mathrm{QA}=$ Absorption loss
$\mathrm{L}=$ Length of channel in thousand feet
$\mathrm{Q}=$ discharge in channel

2.3. MEASUREMENT OF SEEPAGE LOSSES:

Direct Methods

- Ponded Test method
- Canal is made full
- Inflow and outflow is stopped
- Losses measure through change in level at regular interval (e.g. daily) \square Have to close the canal, and not recommended for Main Canals
- Inflow outflow method
- Water budgeting is done
- Flows are measured at upstream, downstream end and diversions
- Seepage = Inflows - Outflows
- Relatively Quick, Simple, but depends on accuracy of discharge measurement (Notch Coefficent? Current Meter?)

Indirect Methods

- Steady state method
- Knowledge of soil permeability and water table level is required
- Flow net is drawn based on water table around canal
- Seepage losses are calculated, using Darcy Forumlae
- $Q=$ KiA
- $Q=$ Seepage flow
- $K=$ Permiability
- $i=$ Head Loss Gradient $=H_{L} / L$
- A = Area of flow
- $Q / A=$ discharge velocity (not actual velocity, that depends on capillary area)
- Canal closure method
- Water table levels are measured before, during and after canal closure
- flow net is drawn using the observed water tables and observed water levels in canal.
- seepage at various canal supply is calculated

3. DESIGN OF OUTLETS, DESIGN OF CANALS IN
 REACHES, DESIGN OF WATER COURSES.

3.1. DESIGN OF CANALS IN REACHES:

Important points:
$>$ Slope of irrigation channel should not be more than the slope of the tract.
$>$ The water level in the main canal is controlled by the water level in branch canals; while the water level in branch canal is controlled by water level in distributaries, and water level in distributaries is controlled by water level required in water courses. Ultimately the water level in water courses is controlled by the elevation of the field to be irrigated. If the slope of the tract is more than the design slope of the channel, in that case fall should be provided at appropriate sites.

LACEY'Ş REGIME THEORY

Based on his work, Lacey presented the following relationships:

FPS Units

* Perimeter:

$$
P=2.67 \sqrt{Q}
$$

Slope:

$$
S=\left(0.0005423 f^{5 / 3}\right) / Q^{1 / 6}
$$

Velocity:

$$
\begin{aligned}
& V=1.154(f R)^{1 / 2} \\
& V=16\left(R^{2 / 3} S^{1 / 3}\right)
\end{aligned}
$$

$$
a=\left(z-2 \sqrt{1+z^{2}}\right), b=P, c=-A
$$

$$
D=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
B=\left(A-z D^{2}\right) / D
$$

3.2. DESIGN OF WATERCOURSES:

> Design it as Lines and Rectangular using Manning's formula:

$$
\mathrm{Q}=1.49 / \mathrm{n} \mathrm{AR}^{2 / 3} \mathbf{S}^{1 / 2}
$$

> Slope of water course $=1: 5000($ Normally $)$ varies from 1:3000~1:4000. Min 1:10000
$\rightarrow \mathrm{B}=2 \mathrm{D}$, Velocity $=1 \mathrm{ft} / \mathrm{sec}, \mathrm{n}=0.013$
> Calculate the depth of water in watercourse

3.3. TYPICAL CROSS-SECTIONS OF CANALS AT START, MID, END, CROSS-SECTION OF WATER COURSE.

Typical Cross-sections of canals at start, mid, end:

Draw the typical canal cross-sections (3 in no.) showing the bed level, NSL, Full Supply Level, FSD, Bed width, canal banks, side roads, spoil bank etc.

3.3.1. Cross-section of water course:

3.3.2. Longitudinal Section of canal showing FSL, BL and NSL

Longitudinal Cross-section should include the following:
> Natural Surface Level
> Bed Level of Canal
> Full Supply Level
> Full Supply Depth
> Location of canal falls (if any)

MINOR CANAL DESIGN															
$\mathrm{S}=$ Side slope= $\mathrm{Z}=$		0.0004													
		0.5H:1V													
		0.5													
$\begin{gathered} \mathrm{Sr} \\ \text { No. } \end{gathered}$	RD	OutLet Number	Discharge	Wetted Perimeter	$\begin{gathered} \text { Silt } \\ \text { factor } \end{gathered}$	Hydraulic Radius	Velocity	Area	a	b	c	Depth		Design depth	Width $\mathbf{f t}$
	-	-	Cusecs	ft		ft	ft/s	$\mathbf{f t}^{2}$	-	-	-	ft	ft	ft	
1	499+01	L_{1}	175.930	35.415	1.397	2.399	2.113	84.968	-1.736	35.415	-84.968	2.777	17.622	2.777	29.204
2	499+01	R_{1}	175.930	35.415	1.397	2.399	2.113	84.968	-1.736	35.415	-84.968	2.777	17.622	2.777	29.204
3	$543+37$	L_{2}	167.175	34.522	1.390	2.363	2.091	81.568	-1.736	34.522	-81.568	2.740	17.145	2.740	28.394
4	$543+37$	R_{2}	167.175	34.522	1.390	2.363	2.091	81.568	-1.736	34.522	-81.568	2.740	17.145	2.740	28.394
5	587+72	L_{3}	158.489	33.613	1.383	2.325	2.069	78.160	-1.736	33.613	-78.160	2.702	16.659	2.702	27.570
6	587+72	R_{3}	158.489	33.613	1.383	2.325	2.069	78.160	-1.736	33.613	-78.160	2.702	16.659	2.702	27.570
7	632+08	L_{4}	149.874	32.687	1.375	2.287	2.046	74.742	-1.736	32.687	-74.742	2.663	16.165	2.663	26.732
8	632+08	R_{4}	149.874	32.687	1.375	2.287	2.046	74.742	-1.736	32.687	-74.742	2.663	16.165	2.663	26.732
9	676+44	L_{5}	141.332	31.742	1.367	2.247	2.022	71.314	-1.736	31.742	-71.314	2.623	15.661	2.623	25.877
10	$676+44$	R_{5}	141.332	31.742	1.367	2.247	2.022	71.314	-1.736	31.742	-71.314	2.623	15.661	2.623	25.877
11	$720+80$	L_{6}	132.863	30.776	1.358	2.205	1.997	67.875	-1.736	30.776	-67.875	2.581	15.146	2.581	25.004
12	$720+80$	R_{6}	132.863	30.776	1.358	2.205	1.997	67.875	-1.736	30.776	-67.875	2.581	15.146	2.581	25.004
13	$765+15$	L_{7}	124.471	29.788	1.350	2.163	1.972	64.422	-1.736	29.788	-64.422	2.538	14.620	2.538	24.113
14	$765+15$	R_{7}	124.471	29.788	1.350	2.163	1.972	64.422	-1.736	29.788	-64.422	2.538	14.620	2.538	24.113
15	809+51	L_{8}	116.157	28.776	1.340	2.118	1.944	60.956	-1.736	28.776	-60.956	2.493	14.082	2.493	23.201
16	809+51	R_{8}	116.157	28.776	1.340	2.118	1.944	60.956	-1.736	28.776	-60.956	2.493	14.082	2.493	23.201
17	$853+87$	L_{9}	107.922	27.737	1.330	2.072	1.916	57.474	-1.736	27.737	-57.474	2.447	13.530	2.447	22.266
18	$853+87$	R9	107.922	27.737	1.330	2.072	1.916	57.474	-1.736	27.737	-57.474	2.447	13.530	2.447	22.266
19	$898+22$	L_{10}	99.770	26.669	1.320	2.024	1.886	53.974	-1.736	26.669	-53.974	2.398	12.964	2.398	21.307
20	$898+22$	R_{10}	99.770	26.669	1.320	2.024	1.886	53.974	-1.736	26.669	-53.974	2.398	12.964	2.398	21.307
21	$942+58$	L_{11}	91.703	25.568	1.309	1.973	1.855	50.453	-1.736	25.568	-50.453	2.347	12.380	2.347	20.319
22	$942+58$	R_{11}	91.703	25.568	1.309	1.973	1.855	50.453	-1.736	25.568	-50.453	2.347	12.380	2.347	20.319
23	986+94	L_{12}	83.723	24.431	1.297	1.920	1.821	46.909	-1.736	24.431	-46.909	2.294	11.778	2.294	19.301
24	986+94	R_{12}	83.723	24.431	1.297	1.920	1.821	46.909	-1.736	24.431	-46.909	2.294	11.778	2.294	19.301
25	103+129	L_{13}	75.834	23.251	1.284	1.864	1.786	43.338	-1.736	23.251	-43.338	2.238	11.155	2.238	18.247
26	103+129	R_{13}	75.834	23.251	1.284	1.864	1.786	43.338	-1.736	23.251	-43.338	2.238	11.155	2.238	18.247
27	$107+565$	L_{14}	68.039	22.024	1.270	1.804	1.747	39.736	-1.736	22.024	-39.736	2.178	10.508	2.178	17.153
28	107+565	R_{14}	68.039	22.024	1.270	1.804	1.747	39.736	-1.736	22.024	-39.736	2.178	10.508	2.178	17.153
29	112+001	L_{15}	60.342	20.741	1.255	1.740	1.706	36.098	-1.736	20.741	-36.098	2.115	9.832	2.115	16.012
30	112+001	R_{15}	60.342	20.741	1.255	1.740	1.706	36.098	-1.736	20.741	-36.098	2.115	9.832	2.115	16.012
31	116+437	L_{16}	52.749	19.392	1.239	1.672	1.660	32.415	-1.736	19.392	-32.415	2.047	9.123	2.047	14.815
32	$116+437$	R_{16}	52.749	19.392	1.239	1.672	1.660	32.415	-1.736	19.392	-32.415	2.047	9.123	2.047	14.815
33	$120+872$	L_{17}	45.263	17.963	1.220	1.597	1.610	28.680	-1.736	17.963	-28.680	1.973	8.374	1.973	13.552
34	$120+872$	R_{17}	45.263	17.963	1.220	1.597	1.610	28.680	-1.736	17.963	-28.680	1.973	8.374	1.973	13.552
35	$125+308$	L_{18}	37.893	16.436	1.198	1.514	1.554	24.879	-1.736	16.436	-24.879	1.892	7.576	1.892	12.206
36	125+308	R_{18}	37.893	16.436	1.198	1.514	1.554	24.879	-1.736	16.436	-24.879	1.892	7.576	1.892	12.206
37	129+744	L_{19}	30.645	14.781	1.173	1.420	1.490	20.993	-1.736	14.781	-20.993	1.801	6.712	1.801	10.752
38	129+744	R_{19}	30.645	14.781	1.173	1.420	1.490	20.993	-1.736	14.781	-20.993	1.801	6.712	1.801	10.752
39	134+179	L_{20}	23.531	12.952	1.142	1.312	1.413	16.994	-1.736	12.952	-16.994	1.699	5.761	1.699	9.153
40	134+179	R_{20}	23.531	12.952	1.142	1.312	1.413	16.994	-1.736	12.952	-16.994	1.699	5.761	1.699	9.153
41	$138+615$	L_{21}	16.563	10.866	1.103	1.181	1.317	12.832	-1.736	10.866	-12.832	1.579	4.680	1.579	7.335
42	138+615	R_{21}	16.563	10.866	1.103	1.181	1.317	12.832	-1.736	10.866	-12.832	1.579	4.680	1.579	7.335
43	143+051	L_{22}	9.763	8.342	1.046	1.008	1.185	8.407	-1.736	8.342	-8.407	1.438	3.367	1.438	5.127
44	143+051	R_{22}	9.763	8.342	1.046	1.008	1.185	8.407	-1.736	8.342	-8.407	1.438	3.367	1.438	5.127
45	$147+486$	L_{23}	3.162	4.748	0.935	0.719	0.946	3.411	-1.736	4.748	-3.411	1.399	3.001	1.388	4.126
46	147+486	R_{23}	3.162	4.748	0.935	0.719	0.946	3.411	-1.736	4.748	-3.411	1.399	3.001	1.388	4.126

4. COMMAND STATEMENT:

It is prepared to ensure that the slope of an irrigation channel is capable of commanding the area to be irrigated.
$>$ From head to tail (when the water at the head of canal is fixed)
> From tail to head (when the topography of the area is dominating and water level at the head can be adjusted)

COMMAND STATEMENT													
Sr. \#	RD		OutLet Name	Length of Water Course $\mathbf{f t}$ 651.69	$\begin{gathered} \text { Tail } \\ \begin{array}{c} \text { Level of } \\ \text { W.C } \end{array} \\ \hline- \\ \hline \end{gathered}$	WaterLevel inWaterCourseft	Slope	Change in length ft	Head Level $\mathbf{f t}$ 1	Water Level in minor ft	Depth of Water in minor ft	Required bed level in Canal $\mathbf{f t}$	Natural Soil Level ft
	-	ft											
1	499+01	49901.6	L1	6561.69	143.78	144.03	0.0004	2.62	146.40	147.40	2.78	144.62	146.40
2	499+01	49901.6	R1	6561.69	143.78	144.03	0.0004	2.62	146.40	147.40	2.78	144.62	146.40
3	543+37	54337.3	L2	6561.69	143.48	143.73	0.0004	2.62	146.10	147.10	2.74	144.36	146.10
4	$543+37$	54337.3	R2	6561.69	143.48	143.73	0.0004	2.62	146.10	147.10	2.74	144.36	146.10
5	587+72	58773	L3	6561.69	143.28	143.53	0.0004	2.62	145.90	146.90	2.70	144.20	145.90
6	$587+72$	58773	R3	6561.69	143.28	143.53	0.0004	2.62	145.90	146.90	2.70	144.20	145.90
7	$632+08$	63208.7	L4	6561.69	143.08	143.33	0.0004	2.62	145.70	146.70	2.66	144.04	145.70
8	$632+08$	63208.7	R4	6561.69	143.08	143.33	0.0004	2.62	145.70	146.70	2.66	144.04	145.70
9	$676+44$	67644.4	L5	6561.69	142.88	143.13	0.0004	2.62	145.50	146.50	2.62	143.88	145.50
10	676+44	67644.4	R5	6561.69	142.88	143.13	0.0004	2.62	145.50	146.50	2.62	143.88	145.50
11	$720+80$	72080.1	L6	6561.69	142.78	143.03	0.0004	2.62	145.40	146.40	2.58	143.82	145.40
12	$720+80$	72080.1	R6	6561.69	142.78	143.03	0.0004	2.62	145.40	146.40	2.58	143.82	145.40
13	765+15	76515.8	L7	6561.69	142.58	142.83	0.0004	2.62	145.20	146.20	2.54	143.66	145.20
14	$765+15$	76515.8	R7	6561.69	142.58	142.83	0.0004	2.62	145.20	146.20	2.54	143.66	145.20
15	809+51	80951.5	L8	6561.69	142.28	142.53	0.0004	2.62	144.90	145.90	2.49	143.41	144.90
16	$809+51$	80951.5	R8	6561.69	142.28	142.53	0.0004	2.62	144.90	145.90	2.49	143.41	144.90
17	853+87	85387.2	L9	6561.69	141.98	142.23	0.0004	2.62	144.60	145.60	2.45	143.15	144.60
18	$853+87$	85387.2	R9	6561.69	141.98	142.23	0.0004	2.62	144.60	145.60	2.45	143.15	144.60
19	898+22	89822.9	L10	6561.69	141.78	142.03	0.0004	2.62	144.40	145.40	2.40	143.00	144.40
20	898+22	89822.9	R10	6561.69	141.78	142.03	0.0004	2.62	144.40	145.40	2.40	143.00	144.40
21	942+58	94258.6	L11	6561.69	141.38	141.63	0.0004	2.62	144.00	145.00	2.35	142.65	144.00
22	942+58	94258.6	R11	6561.69	141.38	141.63	0.0004	2.62	144.00	145.00	2.35	142.65	144.00
23	986+94	98694.3	L12	6561.69	141.08	141.33	0.0004	2.62	143.70	144.70	2.29	142.41	143.70
24	986+94	98694.3	R12	6561.69	141.08	141.33	0.0004	2.62	143.70	144.70	2.29	142.41	143.70
25	103+129	103130	L13	6561.69	140.78	141.03	0.0004	2.62	143.40	144.40	2.24	142.16	143.40
26	103+129	103130	R13	6561.69	140.78	141.03	0.0004	2.62	143.40	144.40	2.24	142.16	143.40
27	107+565	107566	L14	6561.69	140.48	140.73	0.0004	2.62	143.10	144.10	2.18	141.92	143.10
28	107+565	107566	R14	6561.69	140.48	140.73	0.0004	2.62	143.10	144.10	2.18	141.92	143.10
29	$112+001$	112001	L15	6561.69	140.18	140.43	0.0004	2.62	142.80	143.80	2.11	141.69	142.80
30	112+001	112001	R15	6561.69	140.18	140.43	0.0004	2.62	142.80	143.80	2.11	141.69	142.80
31	$116+437$	116437	L16	6561.69	139.88	140.13	0.0004	2.62	142.50	143.50	2.05	141.45	142.50
32	$116+437$	116437	R16	6561.69	139.88	140.13	0.0004	2.62	142.50	143.50	2.05	141.45	142.50
33	$120+872$	120873	L17	6561.69	139.68	139.93	0.0004	2.62	142.30	143.30	1.97	141.33	142.30
34	$120+872$	120873	R17	6561.69	139.68	139.93	0.0004	2.62	142.30	143.30	1.97	141.33	142.30
35	125+308	125308	L18	6561.69	139.28	139.53	0.0004	2.62	141.90	142.90	1.89	141.01	141.90
36	125+308	125308	R18	6561.69	139.28	139.53	0.0004	2.62	141.90	142.90	1.89	141.01	141.90
37	129+744	129744	L19	6561.69	139.18	139.43	0.0004	2.62	141.80	142.80	1.80	141.00	141.80
38	$129+744$	129744	R19	6561.69	139.18	139.43	0.0004	2.62	141.80	142.80	1.80	141.00	141.80
39	$134+179$	134180	L20	6561.69	139.08	139.33	0.0004	2.62	141.70	142.70	1.70	141.00	141.70
40	$134+179$	134180	R20	6561.69	139.08	139.33	0.0004	2.62	141.70	142.70	1.70	141.00	141.70
41	$138+615$	138616	L21	6561.69	138.88	139.13	0.0004	2.62	141.50	142.50	1.58	140.92	141.50
42	$138+615$	138616	R21	6561.69	138.88	139.13	0.0004	2.62	141.50	142.50	1.58	140.92	141.50
43	143+051	143051	L22	6561.69	138.78	139.03	0.0004	2.62	141.40	142.40	1.44	140.96	141.40
44	143+051	143051	R22	6561.69	138.78	139.03	0.0004	2.62	141.40	142.40	1.44	140.96	141.40
45	$147+486$	147487	L23	6561.69	138.68	138.93	0.0004	2.62	141.30	142.30	1.33	140.88	141.30
46	$147+486$	147487	R23	6561.69	138.68	138.93	0.0004	2.62	141.30	142.30	1.33	140.88	141.30

RD VS Different bed levels

5. PREPARATION OF WARABANDI FOR AN OUTLET CHAK:

5.1. DEFINITION AND BRIEF DESCRIPTION:

The term Warabandi means "turns" (wahr) which are "fixed" (bandi).
Warabandi is a rotational method for equitable distribution of the available water in an irrigation system by turns fixed according to predetermined schedule specifying the day, time and duration of supply to each irrigator in proportion to size of his land holding in the outlet command. (Singh 1981, Malhotra 1982)

The warabandi water allocation method practiced in Pakistan's large-scale canal irrigation systems offers some empirical evidence of the relative neglect of water rights as a major issue in agricultural production. In the current practice of warabandi, the actual water distribution is found to deviate substantially from the design stage expectations. The implications of this gap between the design and practice of warabandi are yet to be fully explored.

Malhotra (1982)points out the warabandi is not just distribution of water flowing inside a water course according to a roster but is an integrated water management system extending from source to the farm gate.
The warabandi is a continuous rotation of water in which one complete cycle of rotation that lasts seven days or in some instances, ten days and each farmer in the water course receives water during one turn in this cycle for an already fixed length of time.

The cycle begins at the head and proceeds to the tail of the water course, and during each time turn, the farmer has the right to use all the flowing water in water course. Each year, preferably at canal closer, the warabandi cycle is rotated by twelve hours to give relief to the farmers who had their turns during the night in the preceding year schedule.

5.2. WARABANDI MANAGEMENT SYSTEM:

In the large canal irrigation systems in Pakistan, which are jointly managed by government agencies and farmers, warabandi rules and traditions act as the binding glue for an agencyfarmer interface. A Central Irrigation Agency/department manages the primary main canal system and its secondary level
"distributories" and "minor" canals and deliver water at the head of tertiary level
"watercourse" through an outlet called "mogha" which is designed to provide a quantity of water in proportion to CA of water course.

The agency has to ensure a uniform flow in watercourse so that it continuously receives its allotted water duty. Farmer within the watercourse are expected to manage the on-farm water distribution of water according to warabandi schedule officially "sactioned" or established solely on the basis of mutual agreement by the farmers. Once the arrangement of turns has been agreed upon, the agency does not interfere unless a dispute arises among the farmers and it is brought to official notice. . The dispute is resolved through an adjudication process (a legal process) according to prescribed rules.

The warabandi system in Pakistan includes the following functions and characteristics, among other things;

1. The main canal distributing points operate at supply levels that would allow distributory canals to operate at no less than 75 percent of full supply level.
2. There is rotation of distributaries, in some instances, when the supply in the main canal system falls further.
3. Only "authorized" outlets draw their allotted share of water from a distributary at the same time and
4. Outlets are ungated and deliver a flow of water proportion to the area commanded. Cooperative behavior among agency staff and water users is an overriding requirement to follow an agreed set of rules.
5. Water users have to maintain the watercourse in good condition.
6. The operating agency has to ensure proper hydraulic performance of the conveyance system.

5.3. OBJECTIVES OF WARABANDI:

As an integrated water management system, warabandi is expected to achieve two main objectives,

1. High efficiency
2. Equity in water use.

Water use efficiency is to be achieved through the imposition of water scarcity on each and every user, and equity in distribution through enforced equal share of scarce water per unit area among all users.

5.4. TYPES OF WARABANDI:

5.4.1. Official Warabandi:

Warabandi schedule officially determined and recorded in official document.

Note: None of the watercourses in the study sample followed the official Warabandi schedules in actual practice. (D. J. Bandaragoda)

5.4.2. Agreed Warabandi:

Agreed Warabandi is a derivative of the official Warabandi and is mutually agreed upon by the people for their convenience. For instance, a big landowner may divide his water turn into several component turns with the consent of other farmers. This new schedule is not reflected in the official schedule.

The reported reasons for these modifications were:
$>\quad$ Changes in water supply
$>\quad$ Changes in the physical layout of the watercourse
> Changes in landownership
> Other power relationships among the water users

5.4.3. Actual Warabandi

Field observations of the actual application of water turns by farmers showed that even the agreed warabandi was not strictly followed, and frequent changes took place on timing and duration of turns almost on a daily basis. While the reasons for introducing some flexibility in developing a more functional warabandi on mutual agreement can be easily understood, the divergence between the official warabandi schedules and what is actually practiced in the field is unexpectedly large.

5.5. TWO TYPES OF WARABANDI ARE FREQUENTLY MENTIONED IN PAKISTAN.

5.5.1. Kachcha (ordinary or unregulated) Warabandi:

The warabandi which has been decided by the farmers solely on their mutual agreement, without formal involvement of any government agency, is known as kachcha (ordinary or unregulated) warabandi,

5.5.2. Pucca Warabandi:

The warabandi decided after field investigation and public inquiry by the Irrigation
Department when disputes occurred, and issued in officially recognized warabandi schedules, is called pucca warabandi.

Kachcha warabandi became increasingly unpopular as it was prone to exploitation by large landowners. Wherever this pressure could be challenged openly, disputes were registered with the canal authorities, and after prescribed adjudication processes, the kachcha warabandi was converted to official pucca warabandi schedules. The reason for having kachcha warabandi still in operation in some areas of southern Punjab and Sindh is attributed to the more skewed distribution of land favoring larger landowners in these areas. In central Punjab, the majority of watercourses have pucca warabandi.

5.6. BENEFITS OF WARABANDI:

> Increased cropping intensity
> Irrigation discipline
> Common issues are settled
> Greater economy and dependability
> Simplicity of implementation
> Productivity increment of irrigated agriculture.

5.7. FORMULATION OF WARABANDI:

The warabandi schedule is framed under Section 68 of the Canal and Drainage Act (VIII of 1873) in which rights to form and maintain water distribution schedules for watercourses are vested (having the rights of ownership) with the Canal Officers of the Irrigation Department. Several amendments and departmental rules were added later.

Theoretically, in calculating the duration of warabandi turn given to a particular farm plot, some allowance is added to compensate for the time taken by the flow to fill that part of watercourse leading to farm plot. This is called Khal bharai (filling time). Similarly, in some cases, a farm plot may continue to receive water from a filled portion of the watercourse even when it is blocked upstream to divert water to another farm or another part of the watercourse command. This is called Nikal (Drainage time) and is deduced from the turn duration of that farm plot.

The calculation of Warabandi schedule starts with determining by observation, the total of such filling times $\left(\mathrm{T}_{\mathrm{F}}\right)$ and total of such drainage time $\left(\mathrm{T}_{\mathrm{D}}\right)$. Thus for a weekly Warabandi rotation, the unit irrigation time (\boldsymbol{T}_{U}) in hours per hectare/acre can be given by

$$
T_{U}=\left(7 \times 24-T_{F}+T_{D}\right) / C C A=\left(168-T_{F}+T_{D}\right) / C C A
$$

Where: \quad CCA $=$ Command area of an outlet/watercourse

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{F}}=\text { Total filling time }=\sum \mathrm{T}_{\mathrm{f}} \\
& \mathrm{~T}_{\mathrm{D}}=\text { Total drainage time }=\sum \mathrm{T}_{\mathrm{d}}
\end{aligned}
$$

The value of T_{U} should be same for all the farmers in the water course.
A farmer's Warabandi turn time is given by:

$$
\mathbf{T}_{t}=\mathbf{T}_{u x} \mathbf{A}+\mathbf{T}_{\mathrm{f}}-\mathbf{T}_{\mathrm{d}}
$$

Where: $\quad \mathrm{A}=$ farm area/ area of farmer.
T_{f} and T_{d} are filling and drainage time respectively for a farm area.
Only some of the farms in a watercourse may be entitled to filling time or drainage time, or both. The warabandi schedule is prepared on the basis of different turn times calculated for each farm plot on the basis of these values, whenever they occur, and the area of each farm plot.

5.8. WARABANDI SCHEDULE:

It should be prepared for any one outlet in the irrigation scheme. Divide the whole CCA of outlet into sub areas of 25 acres (01 square $=1100 \mathrm{ft} x 990 \mathrm{ft}$) preferably.

CCA $=$ Outlet Command area
$\mathrm{Q}=$ Outlet discharge
$\mathrm{V}=1 \mathrm{ft} / \mathrm{sec}$
Time of filling/emptying the watercourse $=\mathrm{L} / \mathrm{V}$

$$
\begin{gathered}
\mathrm{T}_{\mathrm{U}}=\left(168-\mathrm{T}_{\mathrm{F}}+\mathrm{T}_{\mathrm{D}}\right) / \mathrm{CCA} \\
\mathrm{~T}_{\mathrm{t}}=\mathrm{TuxA}_{\mathrm{U}}+\mathrm{T}_{\mathrm{f}-}-\mathrm{T}_{\mathrm{d}}
\end{gathered}
$$

5.9. COMMENTS ON WARABANDI FROM FIELD EXPERIENCE:

1. Time required for filling and drainage of watercourse is calculated by considering the velocity of water equal to $1 \mathrm{~m} / \mathrm{sec}(3.281 \mathrm{ft} / \mathrm{sec})$. In actual practice, 5 minutes are added or subtracted per side of an acre (220 ft or 198 ft) for the same purpose.
2. The above said affair is the base FOR most of the disputes arising in the Warabandi after its implementation. As the actual time required by the watercourse for filling is more than 5 minutes per side of acre and the actual time required for the watercourse to be emptied is less. So in general, drainage time is very much liked by the irrigators and filling time is avoided.
3. Conventionally distribution of water is started from head of the watercourse (Head Moga) to tail of the water course with the consideration that at the same point, the land on left side is irrigated first and the land on right side is irrigated latter on. Due to this, at the same nakka points, the land owners having land on left side have to take water filling from the previous nakka (in previous Muraba) which is disliked by the irrigators widely due to above said reason. The solution of the problem which have successfully been implemented in the filed is that when such problem arises, the warabandi should be fixed turn by turn between the two irrigators, irrigating from the nakkas at the same place.
4. "Nikal" is the water left in the water course when the last irrigator irrigates his land. Although drain water subtraction is taken place but on most of the outlets, this dispute arises between the irrigators having their lands at the tail of the watercourse.
