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INTRODUCTION 
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Introduction of subject. 

Introduction of instructors. 

Introduction of books & Reference Material 

Division of the Course Content 

Objectives of the Course 

Teachers:    

 Prof. Dr. Zahid Ahmad 

  Dr. Nauman Khurram     

  Engr. Aamina Rajput 
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EVALUATION METHODOLOGY 
THEORY PART 

Quiz  & Class Participation :     10 % 

(Assignments, Presentations and Attendance): 

Mid-Semester Exam:      30 % 

Final Semester Exam:     60 % 

Final grades are assigned according to the approved policy. 

PRACTICAL PART 

Lab report and Vive Voce:     30 % 

Lab Quiz:       30 % 

External/Neutral Viva Voce Exam:    40 % 

Attendance Requirement:  

Attendance less than 75%, both in theory and lab part 

will attribute to the WF grade. 
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Objectives of Taking This Course 
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 Not interested, want to just pass. 

 Not interested, want to get good grades. 

 Interested want to work in this field. 

 For what grade knowledge, you will study this 
course? 

 How the teachers may help to achieve your 
target? 

 Want to be an inspector, check teachers, check 
facilities, check neatness, check overall 
standard etc. 
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 Transformation of Stresses, Strains and 

Moment of Inertia: 

  Analysis of Stress and Strain at a point due to 

combined effect of axial force, shear force, bending 

and twisting moment. Mohr's circle for stresses and 

strains, relationships between elastic constants.  

 Experimental Stress Analysis: 

 strain rosette solution. 

 Introduction to Theory of Elasticity:  

 Stress tensor, plane stress and plane strain 

problems and formulation of stress function. 

 

CHAPTER OUTLINE 
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 Theories of Yielding/Failure: 

 for ductile and brittle materials. 

 Unsymmetrical (Biaxial) Bending:  

 Symmetrical and unsymmetrical sections,  

 Shear Center:  

 Shear stress distribution in thin walled open 
sections and shear center. 

 Cylinders: 

 Thin, Thick and Compound Cylinders. 

 Columns: 

 Stability of columns, conditions of equilibrium, 
eccentrically loaded columns, initially imperfect 
columns. 
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UNSYMMETRICAL BENDING 

Review of Flexure Theory 

 In simple bending the Flexure (Bending) Theory was 
restricted to loads lying in a plane that contains an axis of 
symmetry of the cross section. 

 

 

 

 The derivation of the equations that govern symmetrical 
bending and lead to the normal stress distribution is based 
on the following assumptions 

 Plane cross sections remain plane 

 Hooke’s law is applicable (i.e. all the strains are within the 
elastic range 

7 

R

E

I

M

y






Dr. Nauman KHURRAM Dr. Nauman KHURRAM 

8 

BENDING DEFORMATION OF A STRAIGHT MEMBER 

When a bending moment is applied to a straight prismatic 

beam, the longitudinal lines become curved and vertical 

transverse lines remain straight and yet undergo a rotation. 

Before deformation After deformation 

A surface in a beam containing 

fibers that does not undergo any 

extension or compression thus not 

subjected to any tension or 

compression. 

Neutral Surface 

x 

y 

z 
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The intersection of neutral surface with any cross-section of 

the beam perpendicular to its longitudinal axes. All fibers on 

one side of the N.A are in the state of tension, which those 

on the opposite sides are in compression. 

Neutral Axes 

Flexure Formula  

The beam has an axial 

plane of symmetry, which 

we take to be the zy-plane. 

The applied loads (such as 

F1, F2, and F3 in Fig) lie in 

the plane of symmetry and 

are perpendicular to the 

axis of the beam (the z-

axis). 

x 

y 

z 
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Let ac and bd are the cross-

sectional plane before bending 

having a differential distance Δz. 

dθ is the angle subtended by the 

plane a’c’ and b’d’ after bending 

and ef is the neutral axes. 

The strain at bottom may be 

calculated as following 
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Applying (ΣF)z = 0: 

  
A A

dAdP 0).(

 
A

dAy
R

E
)3(0.

Since E and R cannot be zero 

thus the normal force will only 

be zero if y = 0 

i.e., along the neutral axis that  

coincides with the centroidal 

axis of the cross section. 
Applying (ΣM)y = 0: 

  
A A

y
R

E
xdAxdP  0).(.

 
A

xyI
R

E
yxdA

R

E
)4(0.

This shows that eqn. (4) is only valid if y-axes is the axes of 

symmetry (i.e. Product moment of inertia is equal to zero) 

and no moment is acting about the y-axes. 
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Applying (ΣM)z = 0: 

  
A A

MydAydP ).(. 

Simple bending theory applies when bending takes place 

about an axes which is perpendicular to the plane of 

symmetry.  

If such an axes drawn through the centroid and another 

mutually perpendicular to it through the centroid, then these 

axes are called the principal axes. 

 The planes that are parallel to the principal axes and 

pass through the shear center are called the principal 

planes of bending 
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Axes of Symmetry 

Axes of symmetry divides the section in such a fashion that 
one part is the mirror image of the other part. 

Symmetrical sections 

Sections which are having at-least one axis of symmetry are 
called the symmetrical sections 

Unsymmetrical sections 

Sections which are not having any axis of symmetry are 
called the unsymmetrical sections 

 

 

 

Symmetric Sections Unsymmetrical Sections 
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Principal Axes 

The axes about which the product moment of area (Iyx or Ixy) 
is found to be zero and second moment of area (Ix & Iy) are 
found to be minimum and maximum 

 A plane of symmetry in a section is automatically a 
principal plane 

 All the plane sections whether they have an axes of 
symmetry or not have two perpendicular axes about 
which product moment of area is zero 

 Simple (Symmetric) bending is the bending  which takes 
place about a principal axis. i.e. moment is applied in a 
plane parallel to that axes or load is acting perpendicular 
to that axes 

 Mainly unsymmetrical bending occurs if moments or 
loadings are not applied about the principal axes. 

 In case of symmetric section principal axes always 
coincide with the centroidal axes 
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SYMMETRICAL BENDING 

If the loading is perpendicular (or parallel) to the one of the 

Principal Axes the bending will be only in the direction of the 

loading, such bending is called the Symmetrical Bending. 

For a symmetrical section to have symmetrical bending, the 

plane of loading must be parallel to or contain a central 

axes which is also a centroidal axes. 

Unsymmetrical section may also be subjected to 

symmetrical bending if plane of loading contains a 

principal axes. 
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UNSYMMETRICAL BENDING 

Unsymmetrical bending occurs if loading is not acting 

parallel or along one of the principal axes. Bending takes 

place out of the plane of the loading and as well in the plane. 

Unsymmetrical bending can takes place both in the 

symmetric and unsymmetrical sections 

Since loads are normally applied along or parallel to the 

centroidal axes, unsymmetrical bending is evident in the 

unsymmetrical sections whose principal axes do not 

coincide with the principal axes. 

Inclination of roof is kept 

equal to the orientation of 

the principal axes from the 

plane of the loading to 

produce the symmetrical 

bending 

x 

y 

x’ 

y' 

α 

α 

Symmetrical bending 

in Z-section purlin 

x’ 

y' 
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In symmetrical section unsymmetrical bending occurs when 

load is acting at an inclination to the axes of symmetry 

(centroidal axes or principal axes). 

 In unsymmetrical bending the neutral axis of the x-section 

does not coincides with the axis of loading 

Procedure to Solve: 

1. Determine the inclination (θ) of the applied loading or 

resultant moment. 

2. Resolved the applied loading or  resultant moment into 

components directed along the principal axes.  

3. The double-headed arrow are used to represent the 

bending moment as a vector direction (clock/counter clock 

wise) of which may determined by the right hand rule. 
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 Use flexure formula to determine normal stress caused 

by each moment component 

 Use principle of superposition to determine resultant 

normal stress at any point on the section. 

 In the addition of the stress components use the sign 

convention with respect to the tension or compression 

produced by the some particular component of the 

moment at any specified point. i.e., Consider tensile 

stress as positive and compressive stress as negative. 

 For a section subjected to any arbitrary moment the 

stress at any specified pint can be determined by the 

following equation 
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= 

= 

+ 

+ 

(σz )max+ (σ’z )max 

 

(σz )max 

(σ’z )max 

(σ’z )max 

(σz )max - (σ’z )max 

 

(σz )max 

Stress due to My Stress due to Mx By Superposition 

Note: The resultant stress after superposition depends upon 

 the magnitude of the tensile and compressive stresses 

 to be added at any specified point. 



Dr. Nauman KHURRAM Dr. Nauman KHURRAM 

21 

Inclination of the Neutral Axes (N.A.) 

In general, the neutral axis for unsymmetrical bending is not 

parallel to the bending moment M. Because the neutral axis is 

the line where the bending stress is zero, its equation can be 

determined by setting σz = 0 in the eqn. (7), which yields 
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 Inclination of N.A. (β) and load (θ) are from the same axes 

and ranging between 0 – 900. 

  If  Ix  >  Iy then β > θ 

  If  Ix  <  Iy then β < θ 

  If Ix  =  Iy then β = θ 

The negative sign indicates the angle is in clock-wise 

Neutral axes always lies between couple vector, M 

(Resultant moment) and principal axes corresponding to the 

Imin (i.e. Iy) 

Deflection 
The deflections of symmetrical and unsymmetrical members 

in the directions of the principal axes may always be 

determined by application of the standard deflection 

formulae. 
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For example, the deflection at the free end of a cantilever 

carrying an end-point-load is PL3/3EI. With the appropriate 

value of I and the correct component of the load 

perpendicular to the principal axis used, the required 

deflection is obtained. 

The total resultant deflection is then given by combining the 

above values vectorally as shown Eqn. (10). 

The direction of the deflection will always be about the N.A. 
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Alternatively  

since bending always occurs about the N.A., the deflection 
equation can be written in the form 

 

 

where β, is the angle between the N.A. and the principal x 

axis. 

where IN.A. is the second moment of area about the N.A. and 

W' is the component of the load perpendicular to the N.A. 

The value of IN,A. may be found either graphically using 

The Equation mentioned above will be derived in next 

sections 
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EXAMPLE PROBLEM 

 A wood beam of rectangular cross section is simply 

supported on a span of length L =1.75 m. The longitudinal 

axis of the beam is horizontal, and the cross-section is tilted 

at an angle of 22.50. The load on the beam is a vertical 

uniform load of intensity q = 7.5 kN/m acting through the 

centroid C. Determine the orientation of the neutral axis and 

calculate the maximum tensile stress σmax. if b = 80 mm, h 

=140 mm. Also determine the maximum deflection 

q = 7.5 kN/m 

L = 1.75 m 
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Problem 11.24: (Book by Andrew Pytel) 
The cross section of the simply supported T-beam has the 

inertial properties Iy= 18.7 in.4 and Ix = 112.6 in.4. The load P 

is applied at mid-span, inclined at 300 to the vertical and 

passing through the centroid C of the cross section. 

(a) Find the angle between the neutral axis and the 

horizontal.  

(b) If the working bending stress is 12 ksi, find the largest 

allowable value of the load P. 

Dr. Nauman KHURRAM 
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Unsymmetrical Bending of Unsymmetrical Sections 

 In unsymmetrical sections principal axes do not 

coincide with centriodal axes. 

 So there will always be unsymmetrical bending even 

though the loading plan is parallel to (or passing 

through) the centroidal axes. 

 All the geometric parameters will be with respect to the 

principal axes. i.e.,  

• Second moment of areas (Ix, Iy, Ixy) 

• Loading plane 

• Orientation of the N.A. 

• Deflection 
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Substituting the value of sin2θ 

and cos2θ in Eqn. (10) and 

(12) or in Eqn. (9) and (11) 
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 Second Moment of Area (Ix and Iy) is always a positive 

quantity   

 Product Moments of Area (Ixy) may be positive or 

negative depending upon the geometry of the section. 

 For any section  Ix + Iy = Ix’ + Iy’  but maximum and 

minimum values are different. 

 Eqn. (7) may also be derived by differentiating the Eqn. 

(9) and (11) with respect to θ and equating them to zero 

as Ix’ and Iy’  have the maximum and minimum values 

about the principal axes. 
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Unsymmetrical Bending of Unsymmetrical 

Sections 

In unsymmetrical sections principal axes do not coincide 

with In unsymmetrical bending the neutral axis of the x-

section does not coincides with the axis of loading 

Procedure to Solve: 

1. Find out the centroid of the cross section and draw the 

axes x and y 

2. Calculate the Ix and Iy and  Ixy. 

3. Determine the orientation of Principal Axes (θp) by following Eqn. 

 

 

 

4. Calculate the Principal moment of inertia, Ix’ and Iy’. By 

any of the following set of the Equations 
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5. Determine the inclination (α) of the applied loading or 

resultant moment with respect to the principal axes. 

6. Resolve the loading along the principal axes. 

7. Determine the Coordinates of the points under 

consideration on the cross-section with respect to 

Principal Axes (i.e., y’ and x’). 

8. Use the Flexure formula and principal of Super position 

to determine the stress at any specifies point 

xy
yxyx

y

x
I

IIII

I

I
2

2

'

22








 











     2sin2cos
2

1

2

1'

xyyxyx

y

x
IIIII

I

I








    2sec
2

1

2

1'

yxyx

y

x
IIII

I

I







OR 

OR 



Dr. Nauman KHURRAM Dr. Nauman KHURRAM 

36 





sincos'

sincos
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yxx

xyy





In above expression insert the x and y values with respect to 

their coordinate sign, however insert the absolute value in the 

flexure equation to determine the bending stress. 

Coordinate with respect to Principal Axes: 

Syed
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Anticlockwise Rotation 

Syed
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Clockwise Rotation
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Deflection (Alternatively)  

since bending always occurs about the N.A., the deflection 
equation can be written in the form 

 

 endfreeatbeamcantileverfor
EI

PL

AN .

3

3


where β, is the angle between the N.A. and the principal x-

axis. 

where IN.A. is the second moment of area about the N.A. and 

W' is the component of the load perpendicular to the N.A. 

The value of IN,A. may be found either graphically using 
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Example Problem 3: 
A 200x100x20 mm Angle section is used as a cantilever 

beam of 3.0 m long with 200 mm leg in vertical 

direction. It supports  a load of 6 kN at free end of beam. 

Compute the following 

1. Maximum bending stress in the beam 

2. Orientation of N.A. 

3. Maximum deflection 

Also plot the stress profile 
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Prob. # 11.27: (Mech. of Material by Andrew Pytel 2nd Ed.) 

The Z-section described in Figure below is used as a simply supported roof 

purlin, 12 ft long, carrying a distributed vertical load of 200 lb/ft. The slope 

of the roof is 1:4, as indicated in the figure. Determine the maximum 

bending stress at corner A of the purlin for the orientations (a) and (b). 

Please bring the solution in the next class 

Attendance is conditional to solution 
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Principal of superposition is most useful when the 
principal axes are known or can be found easily by 
calculation or inspection.  

It is also possible to calculate stresses with respect to 
a set of non–principal axes. 

Using the Principal of Superposition method, 
deflections can be found easily by resolving the 
applied lateral forces into components parallel to the 
principal axes and separately calculating the deflection 
components parallel to these axes.  

The total deflection at any point along the beam is then 
found by combining the components at that point into a 
resultant deflection vector. Note that the resulting 
deflection will be perpendicular to the neutral axis of 
the section at that point. 
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The Radius of Curvature method (General 

Bending Theory) is useful if the principal axes are 

not easily found but the components Ix, Iy and Ixy 

of the inertia tensor can be readily determined. 

In this method all the parameter are used with 

respect to the centroidal axes 

By this method deflections cannot be determined 

by this method. 
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DERIVATION  

Let consider a resistive force dP 

acting at a differential area dA due 

to the moment Mx & My. 
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Total Strain: 

)3()..(
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xyz

KxKyE

E

KxKy
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
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
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Here, Rx & Ry are radius of 

curvatures and Kx & Ky are 

the curvatures in x and y 

direction, respectively 

Applying (ΣF)z = 0: 
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In eqn. (4) E cannot be zero, also Kx & Ky cannot be zero as 

beam is bending. So eqn. (4)  is only valid if x and y are zero. 

Applying (ΣM)y = 0: 
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)5()(2
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Applying (ΣM)z = 0: 
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Generally, Mx & My are known and Kx & Ky are to be 

determined. 

xyyxxyyxyy

yxyxyxyyx

IIEKIEKIM

IIEKIIEKIM





2

Multiplying Eqn. (6) by Iy 

Multiplying Eqn. (5) by Ixy 

For Ky: 
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 Subtracting Eqn. (5) from 

Eqn. (6) 



Dr. Nauman KHURRAM Dr. Nauman KHURRAM 

45 
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Multiplying Eqn. (6) by Ixy 

Multiplying Eqn. (5) by Ix 
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Subtracting Eqn. (6) from 

Eqn. (5) 

Substituting the values of Kx and Ky in Eqn. (3) 
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Inclination of the Neutral Axes (N.A.) 

Equation of Neutral Axes can be determined 

by setting σx = 0 in the eqn. (3), which yields 

)3()..(0 yKxKE yx 
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The negative sign indicates the angle is in clock-wise 

Angle (β) is measured from the positive axes with respect 

to the local centroidal axes) 
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This is the general solution and can be applied to any 

section (Symmetric or Unsymmetrical) 

Eqn. (7) and (8) are derived by assuming the positive 

bending (Tension at the bottom fiber) 

 i.e., upward loading for the cantilever and downward 

loading for simply supported beam. 

For Negative bending tension at top fibers multiplied the 

Eqn. (7) and (8) by (-1).  

 i.e., downward loading for the cantilever and upward 

loading for simply supported beam. 
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Case-I My= 0 
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Case-II Mx= 0 
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Case-III, Symmetrical Section Ixy= 0 
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(Or about the Principal axes) 

Procedure of Radius of Curvature Method 

1. Find out the centroid of the cross section and draw the 

axes z and y 

2. Calculate the Ix and Iy and  Ixy. 

3. Determine the components of the loading with respect 

the centroidal axes. i.e., Mx and My. 
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4. Calculate the curvatures, Kx and Ky as per the sign 

convention. By the following expressions 

 

 

 

5. Calculate the stress at any point by using the following 

equation. 

 

6. In above equation use the x and y values of any 

specified point along their coordinate sign with respect 

to the centroidal axes. 

7. Determine the inclination of the N.A. by the following 

Equation. 
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Solved Example Problem 3, by Radius of curvature 

method 

Cantilever beam  

L = 3.0 m. 

Vertical Load P = 6 kN  
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Assignment Problem 
Book: Mechanics of Materials 2nd  Edition 

  By Andrew Pytel & Jaan Kiusalaas 

 

By Method of super position 

 Problem 11.20 to 11.28 

 

By Radius of curvature Method 

 Problem 11.04, 11.23, 11.26 to 11.27 

 

 Submission time = 2 weeks 

 




