- External energy supplied to system as applied force or imposed motion (displacement, velocity or acceleration) *i* energy supplied to system as applied force or imposed motion (displacement,
 or acceleration)
 i i to deals only with *harmonic excitation* which results in *harmonic response*
 ic forcing function takes t
- This section deals only with *harmonic excitation* which results in *harmonic response*
- Harmonic forcing function takes the form:

- Where F_0 is the amplitude, ω the frequency and ϕ the phase angle.
- The response of a linear system subjected to harmonic excitation is also harmonic.
- The response amplitude depends on the ratio of the excitation frequency to the natural frequency.
- Some "common" harmonic forcing functions are:
	- Rotating machine / element with (large) residual imbalance
	- Vehicle travelling on pavement corrugations or sinusoidal surfaces

• Equation of motion when a force is applied to a viscously damped SDOF system is:

esponse of SDOF System to Harmonic Loading
i when a force is applied to a viscously damped SDOF system
 $m\ddot{x} + c\dot{x} + kx = F(t)$ \leftarrow *non homogeneous differential eqn.*

- The general solution to a nonhomogeneous DE is the sum if the homogeneous solution $x_h(t)$ and the particular solution x_p(t).
- The homogeneous solution represents the solution to the free SDOF which is known to decay over time for all conditions (underdamped, critically damped and overdamped).
- The general solution therefore reduces to the particular solution $x_p(t)$ which represents the steady-state vibration which exists as long as the forcing function is applied.

• Example of solution to harmonically excited damped SDOF system:

• Let the forcing function acting on the mass of an undamped SDOF system be:

$$
F(t) = F_0 \cos(\omega t)
$$

• The eqn. of motion reduces to:

$$
m\ddot{x} + kx = F_0 \cos(\omega t)
$$

• Where the homogeneous solution is:

$$
m x + k x + l_0 \cos(\omega t)
$$

us solution is:

$$
x_h(t) = C_1 \cos(\omega_n t) + C_2 \sin(\omega_n t)
$$

where $\omega_n = \sqrt{k/m}$

• As the excitation is harmonic, the particular solution is also harmonic with the same frequency:

$$
x_p(t) = X \cos(\omega t)
$$

• Substituting $x_p(t)$ in the eqn. of motion and solving for X gives:

$$
X = \frac{F_0}{k - m\omega^2}
$$

• The complete solution becomes

$$
X = \frac{F_0}{k - m\omega^2}
$$

ce solution becomes

$$
x(t) = x_h(t) + x_p(t) = C_1 \cos(\omega_n t) + C_2 \sin(\omega_n t) + \frac{F_0}{k - m\omega^2} \cos(\omega t)
$$

• Applying the initial conditions $x(t=0) = x_0$ and $\dot{x}(t=0) = \dot{x}_0$ gives:

ions
$$
x(t=0) = x_0
$$
 and $\dot{x}(t=0) = \dot{x}_0$
 $C_1 = x_0 - \frac{F_0}{k - m\omega^2}$ and $C_2 = \frac{\dot{x}_0}{\omega_n}$

The complete solution becomes:

$$
C_1 = x_0 - \frac{10}{k - m\omega^2} \quad \text{and} \quad C_2 = \frac{x_0}{\omega_n}
$$

olution becomes:

$$
x(t) = \left(x_0 - \frac{F_0}{k - m\omega^2}\right) \cos(\omega_n t) + \left(\frac{\dot{x}_0}{\omega_n}\right) \sin(\omega_n t) + \frac{F_0}{k - m\omega^2} \cos(\omega t)
$$

• The maximum amplitude of the steady-state solution can be written as:

the steady-state solution can be written as:
\n
$$
\frac{X}{\delta_{st}} = \frac{1}{1 - \left(\frac{\omega}{\omega_n}\right)^2}
$$
\nwhere $\delta_{st} = \frac{F_0}{k}$

• *X/* δ_{st} is the ratio of the dynamic to the static amplitude and is known as the *amplification factor* or amplification ratio and is dependent on the frequency ratio $r = \omega/\omega_p$.

- When ω/ω_n < 1 the denominator of the steady-state amplitude is positive and the amplification factor increases as ω approaches the natural frequency $\omega_{\boldsymbol{n}^\star}$ The response is *in-phase* with the excitation.
- When ω/ω_n > 1 the denominator of the steady-state amplitude is negative an the amplification factor is redefined as:

on factor is redefined a
\n
$$
\frac{X}{\delta_{st}} = \frac{1}{\left(\frac{\omega}{\omega_n}\right)^2 - 1}
$$

 $\left(\frac{\omega}{\omega_n}\right) - 1$
and the steady – state response becomes : ÷

$$
(w_n)
$$

e steady-state respo

$$
x_p(t) = -X \cos(\omega t)
$$

which shows that the response is out-of-phase with the excitation and decreases (\rightarrow zero) as ω increases $(\rightarrow \infty)$

When $\omega/\omega_n = 1$ the denominator of the steady-state amplitude is zero an the response becomes infinitely large. This condition when $\omega \!\! = \!\! \omega_n$ is known as resonance.

• The complete solution

Response of SDOF System to Harmonic Loading – undamped.
\n
$$
x(t) = \left(x_0 - \frac{F_0}{k - m\omega^2}\right) \cos(\omega_n t) + \left(\frac{\dot{x}_0}{\omega_n}\right) \sin(\omega_n t) + \frac{F_0}{k - m\omega^2} \cos(\omega t)
$$
\n
$$
x(t) = \left(x_0 - \frac{F_0}{k - m\omega^2}\right) \cos(\omega_n t) + \left(\frac{\dot{x}_0}{\omega_n}\right) \sin(\omega_n t) + \frac{F_0}{k - m\omega^2} \cos(\omega t)
$$

can be written as:

$$
x(t) = \left(x_0 - \frac{F_0}{k - m\omega^2}\right)\cos(\omega_n t) + \left(\frac{x_0}{\omega_n}\right)\sin(\omega_n t) + \frac{F_0}{k - m\omega^2}\cos(\omega t)
$$

\nn as:
\n
$$
x(t) = A\cos(\omega_n t + \phi) + \frac{\delta_{st}}{1 - \left(\frac{\omega}{\omega_n}\right)^2} \cos(\omega t) \qquad \text{for } \omega/\omega_n < 1
$$

\n
$$
x(t) = A\cos(\omega_n t + \phi) - \frac{\delta_{st}}{1 - \left(\frac{\omega}{\omega_n}\right)^2} \cos(\omega t) \qquad \text{for } \omega/\omega_n > 1
$$

\nwhere A and ϕ are functions of x_0 and \dot{x}_0 as before.

0 0 ϕ

• The complete solution is a sum of two cosines with frequencies corresponding to the natural and forcing (excitation) frequencies.

• **Steady-state Solution**

• If the forcing function is harmonic:
 $F(t) = F_0 \cos(\omega t)$

$$
F(t) = F_0 \cos(\omega t)
$$

• The equation of motion of a SDOF system with viscous damping is:

 $m\ddot{x} + c\dot{x} + kx = F_0 \cos(\omega t)$

• The steady-state response is given by the particular solution which is also expected to be harmonic: on of motion of a SDOF system with $-c\dot{x} + kx = F_0 \cos(\omega t)$
-state response is given by the partial $= X \cos(\omega t - \phi)$

p $m\ddot{x} + c\dot{x} + \ddot{\theta}$
x $\ddot{x} + c\dot{x} + \ddot{\theta}$
x $\phi(t) = Xc\ddot{\theta}$ *os(* $F_0 \cos \theta$
onse is
 $(t - \phi)$

wikhod $\vec{x} + c\vec{x} + kx = F_0 \cos(\omega t)$
 r The steady-state response is given by the particular solution which if $x_p(t) = X \cos(\omega t - \phi)$
 where the amplitude X and the phase angle ϕ *are to be det ermined et e*

• Substituting x_p into the steady-state eqn. of motion yields:

Response of SDOF System to Harmonic Loading – Damped.
\nSubstituting x_p into the steady-state eqn. of motion yields:
\n
$$
X\left[\left(k-m\omega^2\right)\cos(\omega t-\phi)-c\omega\sin(\omega t-\phi)\right]=F_0\cos(\omega t)
$$
\n
$$
applying the trigonometric relationships:
$$
\n
$$
\cos(\omega t-\phi)=\cos(\omega t)\cos(\phi)+\sin(\omega t)\sin(\phi)
$$
\n
$$
\sin(\omega t-\phi)-\sin(\omega t)\cos(\phi)-\cos(\omega t)\sin(\phi)
$$

applying th
cos
sin(
we obtain :

Multiplying
$$
x_p
$$
 into the steady-state eqh. On motion yields.
\n
$$
X \left[\left(k - m\omega^2 \right) \cos(\omega t - \phi) - c\omega \sin(\omega t - \phi) \right] = F_0 \cos(\omega t)
$$
\ng the trigonometric relationships:
\n
$$
\cos(\omega t - \phi) = \cos(\omega t) \cos(\phi) + \sin(\omega t) \sin(\phi)
$$
\n
$$
\sin(\omega t - \phi) = \sin(\omega t) \cos(\phi) - \cos(\omega t) \sin(\phi)
$$
\n
$$
\sin \frac{\omega t}{\omega} \left[\left(k - m\omega^2 \right) \cos(\phi) + c\omega \sin(\phi) \right] = F_0
$$

$$
\cos(\omega t - \phi) = \cos(\omega t) \cos(\phi) + \sin(\omega t) \sin(\phi)
$$

\n
$$
\sin(\omega t - \phi) = \sin(\omega t) \cos(\phi) - \cos(\omega t) \sin(\phi)
$$

\n
$$
\sin:
$$

\n
$$
X \left[\left(k - m\omega^2 \right) \cos(\phi) + \cos(\phi) \right] = F_0
$$

\n
$$
X \left[\left(k - m\omega^2 \right) \sin(\phi) - \cos(\phi) \right] = 0
$$

\ngives:

which gives :

$$
X\left[\left(k-m\omega^{2}\right)\sin(\phi)-c\omega\cos(\phi)\right]=0
$$
\nwhich gives:
\n
$$
X = \frac{F_{0}}{\left[\left(k-m\omega^{2}\right)^{2}+(c\omega)^{2}\right]^{1/2}}
$$
 and $\phi = \tan^{-1}\left(\frac{c\omega}{k-m\omega^{2}}\right)$
\nfor the particular solution
\n
$$
x_{p}(t) = X \cos(\omega t - \phi)
$$

ion

$$
x_p(t) = X \cos(\omega t - \phi)
$$

• Alternatively, the amplitude and phase can be written in terms of the frequency ratio $r = \omega/\omega_n$ and the damping coefficient ζ :

ly, the amplitude and phase can be written in terms of the frequency ratio
$$
r = \omega/\omega_n
$$
 and

\nlog coefficient ζ :

\n
$$
\frac{X}{\delta_{st}} = \frac{1}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta \frac{\omega}{\omega_n}\right]^2} = \frac{1}{\left\{\left[1 - r^2\right]^2 + \left[2\zeta r\right]^2\right\}^{\frac{1}{2}}}
$$
\n
$$
\phi = a \tan \left(\frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2}\right) = a \tan \left(\frac{2\zeta r}{1 - r^2}\right)
$$

Response of SDOF System to Harmonic Loading – Damped.

\n
$$
\frac{X}{\delta_{st}} = \frac{1}{\sqrt{\left[1 - r^2\right]^2 + \left[2\zeta r\right]^2} \quad \phi = \frac{atan\left(\frac{2\zeta r}{1 - r^2}\right)}{1 - r^2}}
$$

- The magnification ratio at all frequencies is reduced with increased damping.
- The effect of damping on the magnification ratio is greatest at or near resonance.
	- The magnification ratio approaches 1 as the frequency ratio approaches 0.
	- The magnification ratio approaches 0 as the frequency ratio approaches ∞

- For undamped systems $(\zeta = 0)$ the phase angle is 0^o (response in phase with excitation) for r<1 and 180° (response out of phase with excitation) for $r>1$.
- For damped systems $(\zeta > 0)$ when $r < 1$ the phase angle is less than 90° and response lags the excitation and when *r >1* the phase angle is greater than 90° and the response leads the excitation (approaches 180° for large frequency ratios..
- For damped systems $(\zeta > 0)$ when $r = 1$ the phase lag is always 90°.

• **Complete Solution**

• The complete solution is the sum of the homogeneous solution $x_h(t)$ and the particular solution $x_p(t)$:

Response of SDOF System to Harmonic Loading – Damped.
\n**Complete Solution**
\nThe complete solution is the sum of the homogeneous solution
$$
x_h(t)
$$
 and the particular solution
\n
$$
x(t) = X_0 e^{-\zeta \omega_n t} \cos(\omega_d t - \phi) + X \cos(\omega t - \phi)
$$
\nwhere $\omega_d = \omega_n \sqrt{1 - \zeta^2}$, X and ϕ are given as before, and X_0 and ϕ_0 are det er mined from the initial conditions