SINGLE DEGREE OF FREEDOM (SDOF) SYSTEM

- Recall: Free vibrations \rightarrow system given initial disturbance and oscillates free of external forces.
- Undamped: no decay of vibration amplitude
- Single DoF:
	- mass treated as rigid
	- Elasticity idealized by single spring
	- only one natural frequency.
- The equation of motion can be derived using
	- Newton's second law of motion
	- D'Alembert's Principle,
	- The principle of virtual displacements and,
	- The principle of conservation of energy.

- Using Newton's second law of motion to develop the **equation of motion.**
	- 1. Select suitable coordinates
	- 2. Establish (static) equilibrium position
	- 3. Draw free-body-diagram of mass
	- 4. Use FBD to apply Newton's second law of motion:

"*Rate of change of momentum = applied force"*

$$
F(t) = \frac{d}{dt} \left(m \frac{dx(t)}{dt} \right)
$$

As m is constant

$$
F(t) = m \frac{d^2x(t)}{dt^2} = m\ddot{x}
$$

For rotational motion

$$
M(t)=J\ddot{\theta}
$$

For the free, undamped single DoF system

$$
F(t) = -kx = m\ddot{x}
$$

or

$$
m\ddot{x} + kx = 0
$$

Principle of virtual displacements:

- "When a system in equilibrium under the influence of forces is given a virtual displacement. The total work done by the virtual forces $= 0$ "
- Displacement is imaginary, infinitesimal, instantaneous and compatible with the system

• When a virtual displacement *dx* is applied, the sum of work done by the spring force and the inertia force are set to zero: $-(kx) \delta x - (m\ddot{x}) \delta x = 0$

$$
-(kx)\delta x - (m\ddot{x})\delta x = 0
$$

Since $dx \neq 0$ the equation of motion is written as:

 $kx + m\ddot{x} = 0$

Principle of conservation of energy:

- No energy is lost due to friction or other energy-dissipating mechanisms.
- If no work is done by external forces, the system total energy = constant
- For mechanical vibratory systems:

$$
KE + PE = constant
$$

or

$$
\frac{d}{dt}(KE + PE) = 0
$$

Since

$$
KE = \frac{1}{2}m\dot{x}^2 \quad and \quad PE = \frac{1}{2}kx^2
$$

then

$$
\frac{d}{dt}(\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2) = 0
$$

or

$$
m\ddot{x} + kx = 0
$$

Vertical mass-spring system:

Vertical mass-spring system:

• From the free body diagram:, using Newton's second law of motion:

$$
m\ddot{x} = -k(x + \delta_{st}) + mg
$$

sin ce $k\delta_{st} = mg$

$$
m\ddot{x} + kx = 0
$$

- Note that this is the same as the eqn. of motion for the horizontal mass-spring system
- \therefore if x is measured from the static equilibrium position, gravity (weight) can be ignored
- This can be also derived by the other three alternative methods.

- **The solution to the differential eqn. of motion.**
- As we anticipate oscillatory motion, we may propose a solution in the form:
 $x(t) = A\cos(\omega_n t) + B\sin(\omega_n t)$

$$
x(t) = A\cos(\omega_n t) + B\sin(\omega_n t)
$$

or

$$
x(t) = Ae^{i\omega_n t} + Be^{-i\omega_n t}
$$

alternatively, if we let $s = \pm i\omega_n$

$$
x(t) = Ce^{\pm st}
$$

$$
C(ms2 + k) = 0
$$

since $c \neq 0$,
 $ms2 + k = 0$ \leftarrow Characteristic equation
and
 $s = \pm i\omega_n = \pm \sqrt{\frac{k}{m}}$ \leftarrow roots = eigenvalues

$$
s = \pm i\omega_n = \pm \sqrt{\frac{k}{m}} \quad \leftarrow roots = eigenvalues
$$

or

$$
\omega_n = \sqrt{\frac{k}{m}}
$$

- **The solution to the differential eqn. of motion.**
- Applying the initial conditions to the general solution: *x*(*t*) = $A cos(\omega_n t) + B sin(\omega_n t)$

t ions to the general solution: $x(t) = Ac$
 $x(t) = A = x_0$ *initial displacement* $(x_{(t=0)}) = A = x_0$ *initial displaceme*
 $\dot{x}_{(t=0)} = B\omega_n = \dot{x}_0$ *initial velocity* s to the general solut
 $y=0$ = A = x_0 *initi* $(t_{00}) = A = x_0$ *initial displacen*
 $t_{00} = B\omega_n = \dot{x}_0$ *initial velocit*

• The solution becomes:

$$
= B\omega_n = \dot{x}_0 \quad \text{initial velocity}
$$
\n
$$
x(t) = x_0 \cos(\omega_n t) + \frac{\dot{x}_0}{\omega_n} \sin(\omega_n t)
$$
\n
$$
\text{if we let} \quad A_0 = \left[x_0^2 + \left(\frac{\dot{x}_0}{\omega_n} \right)^2 \right]^{1/2} \quad \text{and} \quad \phi = a \tan \left(\frac{x_0 \omega_n}{\dot{x}_0} \right) \quad \text{then}
$$
\n
$$
x(t) = A_0 \sin(\omega_n t + \phi)
$$

- This describes motion of harmonic oscillator:
	- Symmetric about equilibrium position
	- Thru equilibrium: velocity is maximum & acceleration is zero
	- At peaks and valleys, velocity is zero and acceleration is maximum
	- $\omega_n = \sqrt{k/m}$ is the natural frequency

Single Degree-of-Freedom systems

FREE VIBRATION OF UNDAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEMS

• Note: for vertical systems, the natural frequency can be written as:

$$
\omega_n = \sqrt{\frac{k}{m}}
$$

\nsinc*e* $k = \frac{mg}{\delta_{st}}$
\n
$$
\omega_n = \sqrt{\frac{g}{\delta_{st}}} \quad or \quad f_n = \frac{1}{2\pi} \sqrt{\frac{g}{\delta_{st}}}
$$

• **Torsional vibration.**

• Approach same as for translational system. Laboratory exercise.

- **Compound pendulum.**
- Given an initial angular displacement or velocity, system will oscillate due to gravitational acceleration.
- Assume rigid body \rightarrow single DoF

Restoring torque:

mgd sin θ

Equation of motion : \mathbb{R}^2

o n d nonlinear2 order ODE L. Equation of motion :
 $J_o\ddot{\theta} + mgd \sin \theta = 0 \Leftrightarrow$ nonlinear 2^{nd} order OD

Linearity is approximated if $\sin \theta \approx \theta$ Therefore mgd sin θ
 \therefore *Equation of motion* :
 $J_o \ddot{\theta} + mgd \sin \theta = 0 \quad \leftarrow$ nor. $\int e^{2\pi} e^{2\pi} e^{2\pi} e^{2\pi}$
 $\theta \approx \theta$ Therefore : sin θ
vation of motion :
+ mgd sin $\theta = 0$ \leftarrow nonling \leftarrow

sin : θ + mgd sin θ = 0 \leftarrow
nearity is approximated
 $\ddot{\theta}$ + mgd θ = 0 \approx

$$
J_o\theta + mgd \sin \theta
$$

Linearity is appi

$$
J_o\ddot{\theta} + mgd\theta = 0
$$

Natural frequency

enc y :

$$
\omega_n = \sqrt{\frac{mgd}{J_o}}
$$

- **Stability.**
- Some systems may have inherent instability

- **Stability.**
- Some systems may have inherent instability
- When the bar is deflected by θ ,

Stability.
Some systems may
When the bar is def
The spring force is :
2kl sin θ *2kl sin* 2 kl sin θ

```
The gravitational force thru G is :
```
mg

*The gravitational force thru G is :
mg*
The inertial moment about O due to the angular acceleration $\ddot{\theta}$ *is :* θ

The eqn. of motion is written as :

$$
J_o \ddot{\theta} = \frac{ml^2}{3} \ddot{\theta}
$$

The eqn. of motion is written as :

$$
\frac{ml^2}{3} \ddot{\theta} + (2kl \sin \theta) l \cos \theta - mg \frac{l}{2} \sin \theta = 0
$$

Free undamped vibration single DoF e undamped vibration single
 $\theta = \theta$ and $cos \theta = 1$. Therefore

Free undamped vibration
For small oscillations, $sin \theta = \theta$ *and* $cos \theta = 1$ *. The refore*

For small oscillations,
$$
sin \theta = \theta
$$
 and $cos \frac{ml^2}{3} \theta + 2kl^2 \theta - \frac{mgl}{2} \theta = 0$

or

Recall: viscous damping force ∞ velocity:

 $\lfloor Ns/m \rfloor$ **Free sin**
viscous damping for
 $=-cx$ $c = damping$
 $Newton's second law$ riscous damping force \propto velocity:
 $-c\dot{x}$ $c = damping \ constant \ or \ coefficient \ [Ns/m$

Newton's second law of motion to obtain the eqn. of
 $=-c\dot{x}-kx$ or $m\ddot{x}+c\dot{x}+kx=0$

tion is assumed to take the form : $=$ *F* = $-c\dot{x}$
F = $-c\dot{x}$ *II:* viscous dampin
 $F = -c\dot{x}$ $c = da\dot{x}$
 m $\ddot{x} = -c\dot{x} - kx$ or
 solution is assumed **Free single DoF vil**
amping force \propto velocity
c = *damping constant or read to the set of mping constant c*
r mix + *cx* + *kx*
r mix + *cx* + *kx*
kto take the form **comation + visco**
coefficient [*Ns / m*]
cobtain the ean of **Free single DoF vibration + viscous dar**
 Applying Newton's second law of motion to obtain the eqn.of motion :
 $\vec{m} = -c\dot{x}$ *c* = *damping constant or coefficient* [*Ns/m*]
 Applying Newton's second law of motion t $F = -c\dot{x}$ (
Applying Newton's
 $m\ddot{x} = -c\dot{x} - kx$
f the solution is ass $s =$ damping constant or
 $s = s$ sec ond law of motion to
 $s = s$ or $m\ddot{x} + c\dot{x} + kx = s$
 s sumed to take the form :

Newton's second law of motion to obtain
 $=-c\dot{x}-kx$ or $m\ddot{x}+c\dot{x}+kx=0$

tion is assumed to take the form :
 $=Ce^{st}$ where $s = \pm i\omega_n$

 $m\ddot{x} = -c\dot{x} - kx$ or $m\ddot{x} + c\dot{x} + kx = 0$

If the solution is assumed to take the form:

\n
$$
\text{ving Newton's second law of } m
$$
\n $m\ddot{x} = -cx - kx$ \n $\text{or } m\ddot{x} + cz$ \n

\n\n $\text{solution is assumed to take the}$ \n $x(t) = Ce^{st}$ \n $\text{where } s = \pm i\omega_n$ \n

\n\n $\dot{x}(t) = \omega_0 e^{st}$ \n $\text{and } \ddot{x}(t)$ \n

 $= sCe^{st}$ $m\ddot{x} = -c\dot{x} - kx$ or
 If the solution is assumed to
 $x(t) = Ce^{st}$ where

then : $\dot{x}(t) = sCe^{st}$ and

Substituting for x, x and x i $d \quad \ddot{x}(t) =$ = Ce^{st} where $s = \pm i\omega_n$

(t) = sCe^{st} and $\ddot{x}(t) =$

1g for x, \dot{x} and \ddot{x} in the eqn.
 $+ cs + k = 0$

f the characteristic eqn. are $\frac{1}{2}$
 $\frac{2}{e^{st}}$ *Substituting for x, x and x in the eqn.of motion*
 $s(t) = Ce^{st}$ where $s = \pm i\omega_n$
 Substituting for x, x and x in the eqn.of motion
 $\cos^2 t + \cos t = 0$ *Then* $\dot{x}(t) = sCe^{st}$ *and* $\ddot{x}(t) = s^2$
 The root of the characteristic eqn. are :
 The root of the characteristic eqn. are : $x\ddot{x} + c\dot{x} + kx =$
 $x \ddot{x} + \dot{x} \dot{y} + kx \dot{z}$
 $\therefore \dot{x} \dot{y} + \dot{z} \dot{z} + kx \dot{z} \dot{z}$
 $\therefore \dot{x} \dot{y} + kx \dot{z} \dot{z} + kx \dot{z} \dot{z}$
 $\therefore \dot{y} \dot{z} + kx \dot{z} \dot{z} + kx \dot{z} \dot{z}$ $x(t) = Ce^{st}$
 $\dot{x}(t) = sCe^{st}$
ituting for x, x a
 $ms^2 + cs + k = 0$
oot of the character

$$
ms^2 + cs + k = 0
$$

Substituting for x,
$$
\dot{x}
$$
 and \ddot{x} in the eqn. of motion
\n $ms^2 + cs + k = 0$
\nThe root of the characteristic eqn. are:
\n $s_{1,2} = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m} = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \left(\frac{k}{m}\right)}$
\nThe two solutions are:
\n $x_1(t) = C_1 e^{s_1 t}$ and $x_2(t) = C_2 e^{s_2 t}$

$$
x_1(t) = C_1 e^{s_1 t} \qquad and \qquad x_2(t) = C_2 e^{s_2 t}
$$

Free single DoF vibration + viscous damping

ion to the Eqn. Of motion is:
 $e^{s_1t} + C_2e^{s_2t}$

1 Free single DoF viboral solution to the Eqn. Of motio $x(t) = C_1 e^{S_1 t} + C_2 e^{S_2 t}$ • The general solution to the Eqn. Of motion is:

Free single
eral solution to the Eqn

$$
x(t) = C_1 e^{s_1 t} + C_2 e^{s_2 t}
$$

or

or
\n
$$
x(t) = C_1 e^{S_1 t} + C_2 e^{S_2 t}
$$
\n
$$
x(t) = C_1 e^{-\frac{1}{2m} \sqrt{\left(\frac{c}{2m}\right)^2 - \left(\frac{k}{m}\right)}t} + C_2 e^{-\frac{1}{2m} \sqrt{\left(\frac{c}{2m}\right)^2 - \left(\frac{k}{m}\right)}t}
$$
\nwhere C_1 and C_2 are arbitrary constants
\ndet or mined from the initial conditions

 $x(t) = C_1 e^{(-t)} +$
where C_1 and C_2 are arbitrary constant
det er mined from the initial conditions. *n .*

• Critical damping (c_c): value of c for which the radical in the general solution is zero:

Free single DoF vibration + viscous damping
bing (c_c): value of c for which the radical in the general solution is zero:

$$
\left(\frac{c_c}{2m}\right)^2 - \left(\frac{k}{m}\right) = 0 \qquad or \qquad c_c = 2m\sqrt{\frac{k}{m}} = 2m\omega_n = 2\sqrt{km}
$$

• **Damping ratio ():** damping coefficient : critical damping coefficient.

$$
2m \int (m)^{-\sigma} \sigma r \qquad c_c = 2m \sqrt{m} = 2m \sigma_n = 2 \sqrt{m}
$$

io (ζ): damping coefficient : critical damping coefficient.

$$
\zeta = \frac{c}{c_c} \qquad or \qquad \frac{c}{2m} = \frac{c}{c_c} \frac{c_c}{2m} = \zeta \omega_n
$$

The roots can be re-written :

 $\overline{}$

$$
\zeta = \frac{C}{c_c} \quad \text{or} \quad \frac{C}{2m} = \frac{C}{c_c} \cdot \frac{C}{2m} = \zeta \omega_n
$$
\nThe roots can be re-written:

\n
$$
s_{1,2} = -\frac{C}{2m} \pm \sqrt{\left(\frac{C}{2m}\right)^2 - \left(\frac{k}{m}\right)} = \left(-\zeta \pm \sqrt{\zeta^2 - 1}\right) \omega_n
$$
\nAnd the solution becomes :

\n
$$
\left(\sqrt{C^2 - 1}\right)^2 = \sqrt{\frac{C^2}{2m}}
$$

$$
S_{1,2} = 2m^{-1}\sqrt{2m} \quad (m) = (-5 - \sqrt{5})^{2} \quad (m)
$$

And the solution becomes :

$$
x(t) = C_1 e^{(-5 + \sqrt{5^2 - 1})\omega_n t} + C_2 e^{(-5 - \sqrt{5^2 - 1})\omega_n t}
$$

• The response x(t) depends on the roots s_1 and $s_2 \rightarrow$ the behaviour of the system is dependent on the damping ratio **.**

Free single DoF vibration + viscous damping
\n
$$
\frac{x(t) = C_1 e^{(-\zeta + \sqrt{\zeta^2 - 1})\omega_n t} + C_2 e^{(-\zeta - \sqrt{\zeta^2 - 1})\omega_n t}}
$$
\nsystem is underdamped. (ζ^2 -1) is negative and the roots can be
\n
$$
(-\zeta + i\sqrt{1 - \zeta^2})\omega_n \quad \text{and} \quad s_2 = (-\zeta - i\sqrt{1 - \zeta^2})\omega_n
$$

• When ζ <1, the system is underdamped. (ζ^2-1) is negative and the roots can be written as:

Free single DoF vibration + VISCOUS damping
\n
$$
x(t) = C_1 e^{\left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n t} + C_2 e^{\left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t}
$$
\n
$$
x(t) = C_1 e^{\left(-\zeta + i\sqrt{1 - \zeta^2}\right)} \omega_n \qquad \text{and} \qquad s_2 = \left(-\zeta - i\sqrt{1 - \zeta^2}\right) \omega_n
$$
\nAnd the solution becomes :
\n
$$
x(t) = C_1 e^{\left(-\zeta + i\sqrt{1 - \zeta^2}\right)} \omega_n t + C_2 e^{\left(-\zeta - i\sqrt{1 - \zeta^2}\right)} \omega_n t
$$

bec omes :

Then
$$
\zeta
$$
 ζ , the system is underaamped. (ζ^{-1}) is negative and the roots can be written as:
\n
$$
s_1 = \left(-\zeta + i\sqrt{1 - \zeta^2}\right)\omega_n \quad \text{and} \quad s_2 = \left(-\zeta - i\sqrt{1 - \zeta^2}\right)\omega_n
$$
\nAnd the solution becomes :
\n
$$
x(t) = C_1 e^{\left(-\zeta + i\sqrt{1 - \zeta^2}\right)}\omega_n t + C_2 e^{\left(-\zeta - i\sqrt{1 - \zeta^2}\right)}\omega_n t
$$
\n
$$
x(t) = e^{-\zeta\omega_n t} \left\{ C_1 e^{\left(i\sqrt{1 - \zeta^2}\right)}\omega_n t + C_2 e^{\left(-i\sqrt{1 - \zeta^2}\right)}\omega_n t \right\}
$$
\n
$$
x(t) = e^{-\zeta\omega_n t} \left\{ (C_1 + C_2) \cos\left(\sqrt{1 - \zeta^2}\omega_n t\right) + i(C_1 - C_2) \sin\left(\sqrt{1 - \zeta^2}\omega_n t\right) \right\}
$$
\n
$$
x(t) = e^{-\zeta\omega_n t} \left\{ C_1' \cos\left(\sqrt{1 - \zeta^2}\omega_n t\right) + C_2' \sin\left(\sqrt{1 - \zeta^2}\omega_n t\right) \right\}
$$
\n
$$
x(t) = X e^{-\zeta\omega_n t} \sin\left(\sqrt{1 - \zeta^2}\omega_n t + \phi\right) \quad \text{or} \quad x(t) = X_0 e^{-\zeta\omega_n t} \cos\left(\sqrt{1 - \zeta^2}\omega_n t - \phi_0\right)
$$

Where C'₁, C'₂; X, ϕ and X_o, ϕ_o are arbitrary constant determined from initial conditions.

Free single DoF vibration + viscous damping
\n
$$
x(t) = e^{-\zeta \omega_n t} \left\{ C_1' \cos \left(\sqrt{1 - \zeta^2} \omega_n t \right) + C_2' \sin \left(\sqrt{1 - \zeta^2} \omega_n t \right) \right\}
$$
\nconditions:
\n
$$
x(t=0) = x_0 \text{ and } \dot{x}(t=0) = \dot{x}_0
$$

• For the initial conditions:

$$
x(t=0) = x_0 \quad and \quad \dot{x}(t=0) = \dot{x}_0
$$

Then

e initial conditions:
\n
$$
x(t=0) = x_0
$$
 and $\dot{x}(t=0) = \dot{x}_0$
\nThen
\n $C'_1 = x_0$ and $C'_2 = \frac{\dot{x}_0 + \zeta \omega_n x_0}{\sqrt{1 - \zeta^2} \omega_n}$
\nTherefore the solution becomes

$$
C'_{1} = x_{0} \quad and \quad C'_{2} = \frac{\dot{x}_{0} + \zeta \omega_{n} x_{0}}{\sqrt{1 - \zeta^{2}} \omega_{n}}
$$

zero the solution becomes

$$
x(t) = e^{-\zeta \omega_{n} t} \left\{ x_{0} \cos \left(\sqrt{1 - \zeta^{2}} \omega_{n} t \right) + \frac{\dot{x}_{0} + \zeta \omega_{n} x_{0}}{\sqrt{1 - \zeta^{2}} \omega_{n}} \sin \left(\sqrt{1 - \zeta^{2}} \omega_{n} t \right) \right\}
$$

• This represents a decaying (damped) harmonic motion with angular frequency $\sqrt{(1-\zeta^2)\omega_{\sf n}}$ also known as the damped natural frequency. The factor $e^{(i)}$ causes the exponential decay.

Exponentially decaying harmonic – free SDoF vibration with viscous damping . Underdamped oscillatory motion and has important engineering applications.

le Degree-of-Freedom systems
\nFree single DoF vibration + viscous damping
\n
$$
x(t) = Xe^{-\zeta \omega_n t} \sin\left(\sqrt{1-\zeta^2} \omega_n t + \phi\right) \quad or \quad x(t) = X_0e^{-\zeta \omega_n t} \cos\left(\sqrt{1-\zeta^2} \omega_n t - \phi_0\right)
$$
\nThe constant is (X, ϕ) and (X_0, ϕ_0) representing the magnitude and phase become :

$$
u(t) = Xe^{-\zeta \omega_0 t} \sin\left(\sqrt{1 - \zeta^2 \omega_0 t + \phi}\right) \quad \text{or} \quad x(t) = X_0e^{-\zeta \omega_0 t} \cos\left(\sqrt{1 - \frac{\zeta^2 \omega_0 t}{c}}\right)
$$

constants (X, ϕ) and (X₀, ϕ) representing the magnitude and phase

$$
X = X_0 = \sqrt{\left(\frac{C_1}{C_1}\right)^2 + \left(\frac{C_2}{C_2}\right)^2}
$$

$$
\phi = a \tan\left(\frac{C_1}{C_2}\right) \quad \text{and} \quad \phi_0 = a \tan\left(-\frac{C_2}{C_1}\right)
$$

• When $\zeta = 1$, c=c_c, system is critically damped and the two roots to the eqn. of motion become:

Free single DoF vibration + visc
\n
$$
c_c
$$
, system is critically damped and the two
\n $s_I = s_2 = -\frac{c_c}{2m} = -\omega_n$
\nand solution is
\n $x(t) = (C_I + C_2 t)e^{-\omega_n t}$
\nApplying the initial conditions $x(t = 0) = x$

$$
x(t) = (C_1 + C_2 t) e^{-\omega_n t}
$$

*i*₀ and $\dot{x}(t=0) = \dot{x}_0$ $s_1 = s_2 = -\frac{c}{2m} = -\omega_n$
and solution is
 $x(t) = (C_1 + C_2 t)e^{-\omega_n t}$
Applying the initial conditions
 $C_1 = x_0$ *x*(*t* = 0) = *x*₀ *and i*(*t* = 0) = *i*₍ *and* $\dot{x}(t=0) = \dot{x}_0$ *yields* $(0, 0) = x_0$ and $\dot{x}(t = 0) = \dot{x}_0$ yields

and solution is
\n
$$
x(t) = (C_1 + C_2t)e^{-\omega_n t}
$$
\nApplying the initial conditions $x(t)$
\n
$$
C_1 = x_0
$$
\n
$$
C_2 = \dot{x}_0 + \omega_n x_0
$$
\nThe solution becomes :

$$
C_1 = x_0
$$

\n
$$
C_2 = \dot{x}_0 + \omega_n x_0
$$

\n*olution becomes :*
\n
$$
x(t) = [x_0 + (\dot{x}_0 + \omega_n x_0)t]e^{-\omega_n t}
$$

• As t $\rightarrow \infty$, the exponential term diminished toward zero and depicts **aperiodic** motion

• When $\zeta > 1$, c>c_c, system is overdamped and the two roots to the eqn. of motion are real and negative: **ee single DoF vibration + viscous dar**
tem is overdamped and the two roots to the e
 $s_I = \left(-\zeta + \sqrt{\zeta^2 - I}\right)\omega_n < 0$

Free single DOF VIDration + VISCOUS damping
\n_c, system is overdamped and the two roots to the eqn. of m
\n
$$
s_1 = \left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n < 0
$$
\n
$$
s_2 = \left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n < 0
$$
\nwith $s_2 \square$ s_1 and the initial conditions $x(t = 0) = x_0$ and the solution becomes :

itial conditions $x(t = 0)$
 $\overline{a^2-1}$ $\int_0^{\infty} \rho_n t$ $2 = \left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n < 0$
 $2 \square$ *S₁* and the initial conditions $x(t = 0) = x_0$ and $\dot{x}(t = 0) = \dot{x}_0$
 2 D S₁ and the initial conditions $x(t = 0) = x_0$ and $\dot{x}(t = 0) = \dot{x}_0$ *ial conditions* $x(t=0) = x_0$
 \overline{I} $\int \omega_n t + C_2 e^{(-\zeta - \sqrt{\zeta^2 - 1})} \omega_n t$ $s_1 = \left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n < 0$
 $s_2 = \left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n < 0$
 $s_2 \Box$ s_1 and the initial conditions $x(t = 0) = x_0$ and $\dot{x}(t = 0) = \dot{x}_0$

dution becomes : $x_2 \Box$ *s₁* and the initial conditions $x(t = 0) = x_0$ and $\dot{x}(t = 0)$
lution becomes :
 $x(t) = C_1 e^{(-\zeta + \sqrt{\zeta^2 - 1})} \omega_n t + C_2 e^{(-\zeta - \sqrt{\zeta^2 - 1})} \omega_n t$ *the solution becomes :* $(0, t) = x_0$ and $\dot{x}(t = 0) = \dot{x}_0$

$$
s_2 \Box \quad s_1 \text{ and the initial conditions } x(t=0) = x_0
$$
\n
$$
\text{lution becomes:}
$$
\n
$$
x(t) = C_1 e^{\left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n t} + C_2 e^{\left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t}
$$
\n
$$
s_2 \omega_n \left(-\zeta + \sqrt{\zeta^2 - 1}\right) + \dot{x}_0
$$
\n
$$
c_1 = \Box
$$

w here

$$
x(t) = C_1 e^{\left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n t} + C_2 e^{\left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t}
$$

\ne
\n
$$
C_1 = \frac{x_0 \omega_n \left(-\zeta + \sqrt{\zeta^2 - 1}\right) + \dot{x}_0}{2\omega_n \sqrt{\zeta^2 - 1}}
$$

\n
$$
C_2 = \frac{-x_0 \omega_n \left(-\zeta - \sqrt{\zeta^2 - 1}\right) - \dot{x}_0}{2\omega_n \sqrt{\zeta^2 - 1}}
$$

Which shows *aperiodic* motion which diminishes exponentially with time.

Free single DoF vibration + viscous damping

Critically damped systems have lowest required damping for aperiodic motion and mass returns to equilibrium position in shortest possible time.