SINGLE DEGREE OF FREEDOM (SDOF) SYSTEM

- Recall: Free vibrations \rightarrow system given initial disturbance and oscillates free of external forces.
- Undamped: no decay of vibration amplitude
- Single DoF:
 - mass treated as rigid
 - Elasticity idealized by single spring
 - only one natural frequency.
- The equation of motion can be derived using
 - Newton's second law of motion
 - D'Alembert's Principle,
 - The principle of virtual displacements and,
 - The principle of conservation of energy.

- Using Newton's second law of motion to develop the equation of motion.
 - 1. Select suitable coordinates
 - 2. Establish (static) equilibrium position
 - 3. Draw free-body-diagram of mass
 - 4. Use FBD to apply Newton's second law of motion:

"Rate of change of momentum = applied force"

1

$$F(t) = \frac{d}{dt} \left(m \frac{dx(t)}{dt} \right)$$

As m is constant

$$F(t) = m \frac{d^2 x(t)}{dt^2} = m \ddot{x}$$

For rotational motion

$$M(t) = J\ddot{\theta}$$

For the free, undamped single DoF system

$$F(t) = -kx = m\ddot{x}$$

or
$$m\ddot{x} + kx = 0$$

Principle of virtual displacements:

- "When a system in equilibrium under the influence of forces is given a virtual displacement. The total work done by the virtual forces = 0"
- Displacement is imaginary, infinitesimal, instantaneous and compatible with the system

• When a virtual displacement *dx* is applied, the sum of work done by the spring force and the inertia force are set to zero:

$$-(kx)\delta x - (m\ddot{x})\delta x = 0$$

• Since $dx \neq 0$ the equation of motion is written as:

 $kx + m\ddot{x} = 0$

Principle of conservation of energy:

- No energy is lost due to friction or other energy-dissipating mechanisms.
- If no work is done by external forces, the system total energy = constant
- For mechanical vibratory systems:

$$KE + PE = constant$$

or
$$\frac{d}{dt}(KE + PE) = 0$$

Since

$$KE = \frac{1}{2}m\dot{x}^{2} \quad and \quad PE = \frac{1}{2}kx^{2}$$

then
$$\frac{d}{dt}\left(\frac{1}{2}m\dot{x}^{2} + \frac{1}{2}kx^{2}\right) = 0$$

or
$$m\ddot{x} + kx = 0$$

Vertical mass-spring system:

Vertical mass-spring system:

• From the free body diagram:, using Newton's second law of motion:

$$m\ddot{x} = -k(x + \delta_{st}) + mg$$

since $k\delta_{st} = mg$
 $m\ddot{x} + kx = 0$

- Note that this is the same as the eqn. of motion for the horizontal mass-spring system
- ... if x is measured from the static equilibrium position, gravity (weight) can be ignored
- This can be also derived by the other three alternative methods.

- The solution to the differential eqn. of motion.
- As we anticipate oscillatory motion, we may propose a solution in the form:

$$x(t) = A\cos(\omega_n t) + B\sin(\omega_n t)$$

or
$$x(t) = Ae^{i\omega_n t} + Be^{-i\omega_n t}$$

alternatively, if we let $s = \pm i\omega_n$
 $x(t) = Ce^{\pm st}$

$$C(ms^{2} + k) = 0$$

since $c \neq 0$,
 $ms^{2} + k = 0 \qquad \leftarrow Characteristic equation$
and

$$\boxed{1}$$

$$s = \pm i\omega_n = \pm \sqrt{\frac{k}{m}} \quad \leftarrow roots = eigenvalues$$

or

$$\omega_n = \sqrt{\frac{k}{m}}$$

- The solution to the differential eqn. of motion.
- Applying the initial conditions to the general solution: $x(t) = A\cos(\omega_n t) + B\sin(\omega_n t)$

 $x_{(t=0)} = A = x_0$ initial displacement $\dot{x}_{(t=0)} = B\omega_n = \dot{x}_0$ initial velocity

• The solution becomes:

$$x(t) = x_0 \cos(\omega_n t) + \frac{\dot{x}_0}{\omega_n} \sin(\omega_n t)$$

if we let $A_0 = \left[x_0^2 + \left(\frac{\dot{x}_0}{\omega_n}\right)^2 \right]^{1/2}$ and $\phi = a \tan\left(\frac{x_0\omega_n}{\dot{x}_0}\right)$ then
 $x(t) = A_0 \sin(\omega_n t + \phi)$

- This describes motion of harmonic oscillator:
 - Symmetric about equilibrium position
 - Thru equilibrium: velocity is maximum & acceleration is zero
 - At peaks and valleys, velocity is zero and acceleration is maximum
 - $\omega_n = \sqrt{(k/m)}$ is the natural frequency

Single Degree-of-Freedom systems

FREE VIBRATION OF UNDAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEMS

• Note: for vertical systems, the natural frequency can be written as:

$$\omega_{n} = \sqrt{\frac{k}{m}}$$

since $k = \frac{mg}{\delta_{st}}$
 $\omega_{n} = \sqrt{\frac{g}{\delta_{st}}}$ or $f_{n} = \frac{1}{2\pi} \sqrt{\frac{g}{\delta_{st}}}$

- Torsional vibration.
- Approach same as for translational system. Laboratory exercise.

• Compound pendulum.

- Given an initial angular displacement or velocity, system will oscillate due to gravitational acceleration.
- Assume rigid body \rightarrow single DoF

Restoring torque:

 $mgd \sin \theta$

: *Equation of motion* :

 $J_o \ddot{\theta} + mgd \sin \theta = 0 \quad \leftarrow nonlinear 2^{nd} \ order \ ODE$

Linearity is approximated if $\sin \theta \approx \theta$ Therefore :

$$J_o \ddot{\theta} + mgd\theta = 0$$

Natural frequency:

$$\omega_n = \sqrt{\frac{mgd}{J_o}}$$

- Stability.
- Some systems may have inherent instability

- Some systems may have inherent instability
- When the bar is deflected by θ ,

```
The spring force is : 2kl \sin \theta
```

```
The gravitational force thru G is :
```

mg

The inertial moment about O due to the angular acceleration $\ddot{\theta}$ is :

$$J_o \ddot{\theta} = \frac{ml^2}{3} \ddot{\theta}$$

The eqn. of motion is written as :

$$\frac{ml^2}{3}\ddot{\theta} + (2kl\sin\theta)l\cos\theta - mg\frac{l}{2}\sin\theta = 0$$

For small oscillations, $\sin \theta = \theta$ and $\cos \theta = 1$. Therefore

$$\frac{ml^2}{3}\theta + 2kl^2\theta - \frac{mgl}{2}\theta = 0$$

or

Recall: viscous damping force ∞ velocity:

 $F = -c\dot{x}$ $c = damping \ constant \ or \ coefficient [Ns/m]$

Applying Newton's second law of motion to obtain the eqn. of motion :

 $m\ddot{x} = -c\dot{x} - kx$ or $m\ddot{x} + c\dot{x} + kx = 0$

If the solution is assumed to take the form :

$$x(t) = Ce^{st}$$
 where $s = \pm i\omega_n$

then: $\dot{x}(t) = sCe^{st}$ and $\ddot{x}(t) = s^2Ce^{st}$ Substituting for x, \dot{x} and \ddot{x} in the eqn. of motion

$$ms^2 + cs + k = 0$$

The root of the characteristic eqn. are :

$$s_{1,2} = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m} = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \left(\frac{k}{m}\right)}$$

The two solutions are :

$$x_{l}(t) = C_{l}e^{s_{l}t}$$
 and $x_{2}(t) = C_{2}e^{s_{2}t}$

• The general solution to the Eqn. Of motion is:

$$x(t) = C_1 e^{s_1 t} + C_2 e^{s_2 t}$$

or

$$x(t) = C_1 e^{\left\{-\frac{c}{2m} + \sqrt{\left(\frac{c}{2m}\right)^2 - \left(\frac{k}{m}\right)}\right\}t} + C_2 e^{\left\{-\frac{c}{2m} - \sqrt{\left(\frac{c}{2m}\right)^2 - \left(\frac{k}{m}\right)}\right\}t}$$

where C_1 and C_2 are arbitrary constants det ermined from the initial conditions.

Critical damping (c_c): value of c for which the radical in the general solution is zero:

$$\left(\frac{c_c}{2m}\right)^2 - \left(\frac{k}{m}\right) = 0$$
 or $c_c = 2m\sqrt{\frac{k}{m}} = 2m\omega_n = 2\sqrt{km}$

• **Damping ratio (***ζ***):** damping coefficient : critical damping coefficient.

$$\zeta = \frac{c}{c_c}$$
 or $\frac{c}{2m} = \frac{c}{c_c}\frac{c_c}{2m} = \zeta \omega_n$

The roots can be re – written :

$$s_{1,2} = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \left(\frac{k}{m}\right)} = \left(-\zeta \pm \sqrt{\zeta^2 - 1}\right)\omega_n$$

And the solution becomes :

$$x(t) = C_1 e^{\left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n t} + C_2 e^{\left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t}$$

• The response x(t) depends on the roots s_1 and $s_2 \rightarrow$ the behaviour of the system is dependent on the damping ratio ζ .

$$x(t) = C_1 e^{\left(-\zeta + \sqrt{\zeta^2 - l}\right)\omega_n t} + C_2 e^{\left(-\zeta - \sqrt{\zeta^2 - l}\right)\omega_n t}$$

• When $\zeta < 1$, the system is underdamped. (ζ^2 -1) is negative and the roots can be written as:

$$s_1 = \left(-\zeta + i\sqrt{1-\zeta^2}\right)\omega_n$$
 and $s_2 = \left(-\zeta - i\sqrt{1-\zeta^2}\right)\omega_n$

And the solution becomes :

$$\begin{aligned} x(t) &= C_1 e^{\left(-\zeta + i\sqrt{1-\zeta^2}\right)\omega_n t} + C_2 e^{\left(-\zeta - i\sqrt{1-\zeta^2}\right)\omega_n t} \\ x(t) &= e^{-\zeta\omega_n t} \left\{ C_1 e^{\left(i\sqrt{1-\zeta^2}\right)\omega_n t} + C_2 e^{\left(-i\sqrt{1-\zeta^2}\right)\omega_n t} \right\} \\ x(t) &= e^{-\zeta\omega_n t} \left\{ (C_1 + C_2)\cos\left(\sqrt{1-\zeta^2}\omega_n t\right) + i(C_1 - C_2)\sin\left(\sqrt{1-\zeta^2}\omega_n t\right) \right\} \\ x(t) &= e^{-\zeta\omega_n t} \left\{ C_1'\cos\left(\sqrt{1-\zeta^2}\omega_n t\right) + C_2'\sin\left(\sqrt{1-\zeta^2}\omega_n t\right) \right\} \\ x(t) &= X e^{-\zeta\omega_n t} \sin\left(\sqrt{1-\zeta^2}\omega_n t + \phi\right) \quad \text{or} \quad x(t) = X_0 e^{-\zeta\omega_n t}\cos\left(\sqrt{1-\zeta^2}\omega_n t - \phi_0\right) \end{aligned}$$

Where C'₁, C'₂; X, ϕ and X_o, ϕ_o are arbitrary constant determined from initial conditions.

$$x(t) = e^{-\zeta \omega_n t} \left\{ C'_1 \cos\left(\sqrt{1-\zeta^2}\omega_n t\right) + C'_2 \sin\left(\sqrt{1-\zeta^2}\omega_n t\right) \right\}$$

• For the initial conditions:

$$x(t=0) = x_0$$
 and $\dot{x}(t=0) = \dot{x}_0$

Then

$$C'_{1} = x_{0}$$
 and $C'_{2} = \frac{\dot{x}_{0} + \zeta \omega_{n} x_{0}}{\sqrt{1 - \zeta^{2}} \omega_{n}}$

Therefore the solution becomes

$$x(t) = e^{-\zeta\omega_n t} \left\{ x_0 \cos\left(\sqrt{1-\zeta^2}\omega_n t\right) + \frac{\dot{x}_0 + \zeta\omega_n x_0}{\sqrt{1-\zeta^2}\omega_n} \sin\left(\sqrt{1-\zeta^2}\omega_n t\right) \right\}$$

• This represents a decaying (damped) harmonic motion with angular frequency $\sqrt{(1-\zeta^2)\omega_n}$ also known as the damped natural frequency. The factor e⁻⁽⁾ causes the exponential decay.

Exponentially decaying harmonic – free SDoF vibration with viscous damping . Underdamped oscillatory motion and has important engineering applications.

$$x(t) = Xe^{-\zeta\omega_n t} \sin\left(\sqrt{1-\zeta^2}\omega_n t + \phi\right) \quad or \quad x(t) = X_0 e^{-\zeta\omega_n t} \cos\left(\sqrt{1-\zeta^2}\omega_n t - \phi_0\right)$$

The constants (X, ϕ) and (X_0, ϕ_0) representing the magnitude and phase become :

$$X = X_0 = \sqrt{\left(C_1'\right)^2 + \left(C_2'\right)^2}$$

$$\phi = a \tan\left(\frac{C_1'}{C_2'}\right) \quad and \quad \phi_0 = a \tan\left(-\frac{C_2'}{C_1'}\right)$$

• When $\zeta = 1$, $c=c_c$, system is critically damped and the two roots to the eqn. of motion become:

$$s_1 = s_2 = -\frac{c_c}{2m} = -\omega_n$$

and solution is

$$x(t) = (C_1 + C_2 t)e^{-\omega_n t}$$

Applying the initial conditions $x(t=0) = x_0$ and $\dot{x}(t=0) = \dot{x}_0$ yields

$$C_1 = x_0$$
$$C_2 = \dot{x}_0 + \omega_n x_0$$

The solution becomes :

$$x(t) = \left[x_0 + \left(\dot{x}_0 + \omega_n x_0\right)t\right]e^{-\omega_n t}$$

• As $t \rightarrow \infty$, the exponential term diminished toward zero and depicts *aperiodic* motion

• When $\zeta > 1$, c>c_c, system is overdamped and the two roots to the eqn. of motion are real and negative:

$$s_{1} = \left(-\zeta + \sqrt{\zeta^{2} - 1}\right)\omega_{n} < 0$$
$$s_{2} = \left(-\zeta - \sqrt{\zeta^{2} - 1}\right)\omega_{n} < 0$$

with $s_2 \square s_1$ and the initial conditions $x(t=0) = x_0$ and $\dot{x}(t=0) = \dot{x}_0$ the solution becomes :

$$x(t) = C_1 e^{\left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n t} + C_2 e^{\left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t}$$

where

$$C_{1} = \frac{x_{0}\omega_{n}\left(-\zeta + \sqrt{\zeta^{2} - 1}\right) + \dot{x}_{0}}{2\omega_{n}\sqrt{\zeta^{2} - 1}}$$

$$C_{2} = \frac{-x_{0}\omega_{n}\left(-\zeta - \sqrt{\zeta^{2} - 1}\right) - \dot{x}_{0}}{2\omega_{n}\sqrt{\zeta^{2} - 1}}$$

Which shows *aperiodic* motion which diminishes exponentially with time.

Free single DoF vibration + viscous damping

Critically damped systems have lowest required damping for aperiodic motion and mass returns to equilibrium position in shortest possible time.