

CRACKING IN R. C.

- Cracks are induced in RC members by the action of loads and by environmental conditions.
- $\bm{\cdot}$ If a small cube of concrete is cast, it will $\|\cdot\|$ not exhibit cracking apparent to naked eye. A share that the control of th
- If a long specimen with relatively small xsection is made containing reinforcement, **with the contact of the contact of the contact of the contact of the** and the ends of reinforcement are held to prevent any movement,after a few days it will be found cracked.

CRACKING IN R. C.

- Depending on the relation between the quantity of reinforcement, the bar size, and the cross sectional area of concrete, either a few wide cracks, or a large number of fine cracks will form.
- The cracks are induced by the resistance of the reinforcement to the strains in the concrete caused by chemical hydration of the cement in the concrete mixture.

CRACK DISTRIBUTION

movement may be controlled by reinforcement. The objective is to distribute the overall strain in the member by reinforcement and by movement joints, so that the crack widths are acceptable or, if considered desirable, that the concrete remains uncracked. **CRACK DISTRIBUTION**

• Cracking due to early thermal

• movement may be controlled by

reinforcement. The objective is to

member by reinforcement and by

movement joints, so that the crack

member by reinforcement and by • Cracking due to early thermal

reinforcement The objective is to

distribute the overall strain in the

member by reinforcement and by

movement joints, so that the crack

widths are acceptable or, if considered

desirab

CRACK DISTRIBUTION

- closely spaced movement joints with a low steel ratio, or widely spaced joints with a high steel ratio.
- of the structure, method of construction, and economics.

- form depends on the total contraction strain which is unrelieved by the joints in the length of section.
- shrinkage strain and the thermal strain (due to changes in the ambient temperatures after the str is complete) **A subset of the set of the**

- **CRACK WIDTHS**
• Assuming that the steel ratio is greater
than critical steel and with full restraints,
the tensile strain in the concrete may be
assumed to vary from zero adjacent to a
crack to a value ε_{ult} midway be than critical steel and with full restraints, the tensile strain in the concrete may be assumed to vary from zero adjacent to a crack to a value ε_{ult} midway between cracks at a distance s_{max} apart. **• CRACK WIDTHS**
• Assuming that the steel ratio is greater
than critical steel and with full restraints,
the tensile strain in the concrete may be
essumed to vary from zero adjacent to a
crack to a value $\varepsilon_{\omega n}$ midwa **CRACK WIDTHS**
Assuming that the steel ratio is greater
than critical steel and with full restraints,
the tensile strain in the concrete may be
assumed to vary from zero adjacent to a
crack to a value ε_{ult} midway betw **• CRACK WIDTHS**

• Assuming that the steel ratio is greater

than critical steel and with full restraints,

the tensile strain in the concrete may be

crack to a value ε_{m} midway between

cracks at a distance ε_{m
-

width, which is difference between the total contraction strain and the strain remaining in the concrete is therefore given by

> S_{max} = $\boldsymbol{\epsilon}_{te}$ + $\boldsymbol{\epsilon}_{cs}$ = 0.3 $\boldsymbol{\epsilon}_{ult}$ $\frac{w}{w_{\text{max}}} = \varepsilon_{te} + \varepsilon_{cs} - 0.5\varepsilon_{ult}$

CRACK WIDTHS

$$
\frac{w}{s_{\text{max}}} = \varepsilon_{te} + \varepsilon_{cs} - 0.5\varepsilon_{ult}
$$

Where

w=maximum crack width s_{max} = maximum crack spacing ε_{cs} =total shrinkage strain ε_{t} =thermal contraction strain ε_{ult} =ultimate tensile strain in concrete

- ε_{ult} =200 µ strains
- $\varepsilon_{\rm cs}$ =100 μ strains

$\varepsilon_{\rm te}$ =w/s_{max}

 ε_{te} is therefore due to cooling from peak of hydration temperature ${\sf T}_1$ to ambient $\begin{array}{|c|c|c|}\hline \end{array}$ temperature. There is also a further variation in temperature T_2 due to $\|\cdot\|$ seasonal changes after concrete is set. **CRACK WIDTHS**
 $\epsilon_{\text{bg}} = 100$ µ strains
 $\epsilon_{\text{bg}} = 100$ µ strains
 $\epsilon_{\text{bg}} = 100$ µ strains
 $\epsilon_{\text{bg}} = 100$ and ϵ_{bg} is therefore due to cooling from peak of

temperature. There is also a further

variation in $\sum_{c_{0z}} = 100 \mu$ strains
 $\sum_{0z} = W S_{max}$
 $\sum_{0z} = W S_{max}$

therefore due to cooling from peak of

thydration temperature T, to ambient

temperature. There is also a further

variation in temperature T₂ due to

seasonal

CRACK WIDTHS

- When considering strain due to T_1 an effective coefficient of expansion of one half for mature concrete should be used (due to high creep strain in immature concrete). **• CRACK WIDTHS**

• When considering strain due to T_1 an effective coefficient of expansion of one half for mature concrete should be used (cute to high creep strain in immature concrete).

• For mature concrete and se
- variations due to ${\sf T_2}$, the tensile strength \vert of the concrete is lower than its bond strength--------------

CRACK WIDTHS

concrete when ${\sf T}_2$ is appropriate;thus $\begin{array}{|c|c|}\hline \end{array}$ the actual contraction can be effectively halved.

$$
\frac{w}{s_{max}} = \varepsilon_{te} + \varepsilon_{cs} - 0.5\varepsilon_{ult}
$$
\n
$$
= \frac{1}{2}\alpha (T_1 + T_2) + 100 - \frac{200}{2} = \alpha \frac{T_1 + T_2}{2}
$$
\n
$$
w = s_{max} \alpha \frac{T_1 + T_2}{2}
$$
\nEXECERCISE 21.12.10.6 /°C

\n∴ α=12x10.6 /°C

\n∴ T₁=30°C for concreting in summer and 20°C for concreting in winter.

\n∴ T₂=20, 10°C respectively for summer and winter construction. May be taken=0 if full contraction joints are provided at not more than 15 m c/c.

$$
\frac{\text{CRACK WIDTHS}}{\epsilon_{cs} - 0.5\varepsilon_{ult}}
$$
\n
$$
(T_1 + T_2) + 100 - \frac{200}{2} = \alpha \frac{T_1 + T_2}{2}
$$

 α =12x10⁻⁶ / $\rm ^{o}C$

- concreting in winter.
- T_2 =20, 10 °C respectively for summer and
winter construction. May be taken=0 if full contraction joints are provided at not more than 15 m c/c.

$$
W = S_{\text{max}} \alpha \frac{T_1 + T_2}{2} \sqrt{S_{\text{max}}} = \frac{f_{ct}}{f_b} \frac{\phi}{2\rho_c}
$$
\n
$$
\rho_c = \frac{f_{ct}}{f_b} \frac{T_1 + T_2}{4w} \alpha \phi
$$

