

Geotechnical Engineering—II BSc Civil Engineering — 5th Semester

Lab # 6

by

Dr. Muhammad Irfan

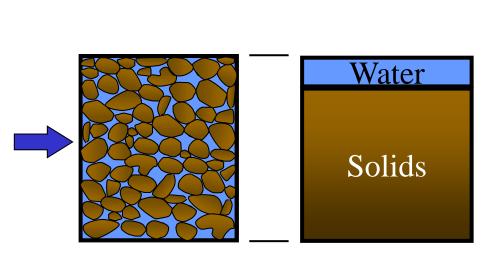
Assistant Professor

Civil Engg. Dept. – UET Lahore

Email: mirfan1@msn.com

Lecture Handouts: https://groups.google.com/forum/#!forum/geotech-ii

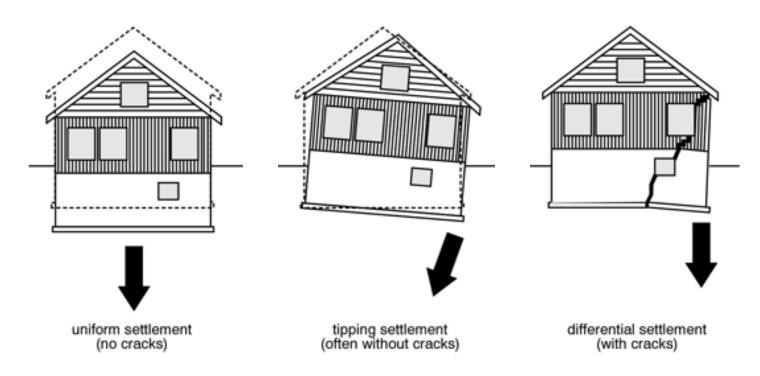
CONSOLIDATION OF SOIL


Soil *volume reduction* due to *expulsion of water* upon application of *external load/stress*.

fully saturated soil, so all voids filled with water only (no air)

Before Consolidation

Water Solids


After Consolidation

Saturated Fine-grained Soil

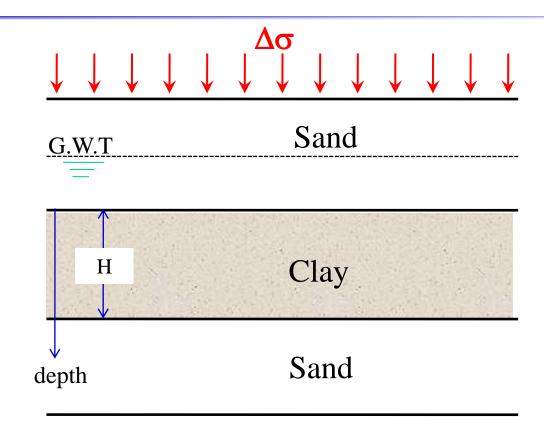
Consolidation Damages

- Soil *volume reduction* due to *expulsion of water* upon application of *external load/stress*.
 - → *Settlement* of structures
 - → *Cracks* in walls, foundations, etc.

CONSOLIDATION PARAMETERS

Magnitude of consolidation settlement

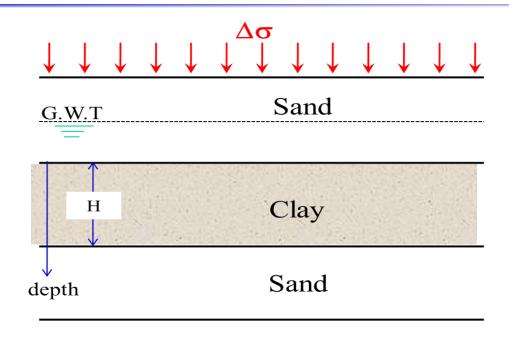
dependent on compressibility of soil


- expressed in term of *compression index (Cc)*

<u>Rate</u> of consolidation settlement

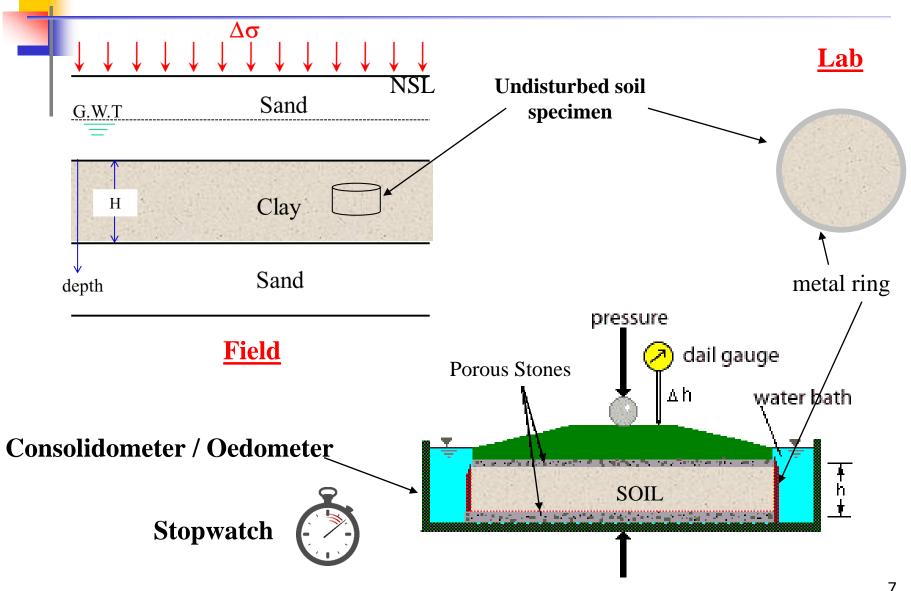
dependent on

- i. permeability, &
- ii. compressibility of soil.
 - expressed in term of *co-efficient of consolidation (Cv)*


Consolidation Settlement in the Field

External stress ($\Delta \sigma$) applied on a soil stratum in the field.

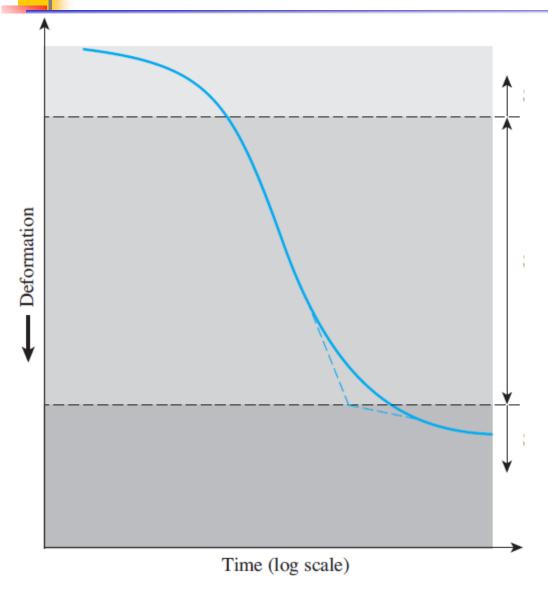
- SAND \rightarrow *Quick drainage* of water \rightarrow *Immediate settlement*
- CLAY \rightarrow *Slow drainage* \rightarrow *Consolidation settlement* (time dependent)


One-Dimensional Consolidation

Drainage and deformations occur in vertical direction only.

A reasonable simplification for solving consolidation problems

1-D Lab Consolidation



- Observations -

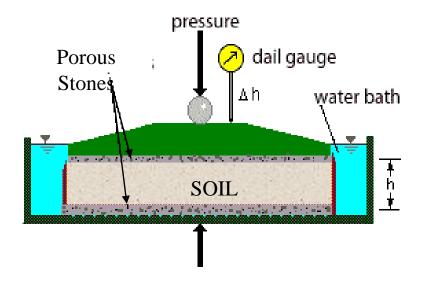
Sample Observations

Elapsed Time	Dial Gauge Readings								
	Loading (lb)								
	0	1.25	2.5	5	10	20	40	80	
0	1000	1000	970	948	920.5	885	836	788.5	
0.25 min		986.5	962	936	903	862	814	763	
0.5 min		984	960.5	934.5	899	858	810	759	
1 min		983.5	960	934	898	857.5	809	758	
2 min		981	958.5	932	895.5	852	805	753	
4 min		978.5	956.5	929.5	892	848	801	749	
8 min		977	955	928.5	889	845	798	746	
15 min		975	954	928	887.5	844	796	744.5	
30 min		974	953.5	927.5	887	842	794	742.2	
1 hr		972	953	926	886.5	841	793	740	
2 hr		970	952	924	886	840	791.5	738	
4 hr		970	952	923	885	8839	790	737	
8 hr		970	9950	921	885	837	788.5	736	
24 hr		970	948	920.5	885	836		735	
Unloading	750	722		702		674			

Deformation ~ Time Plot

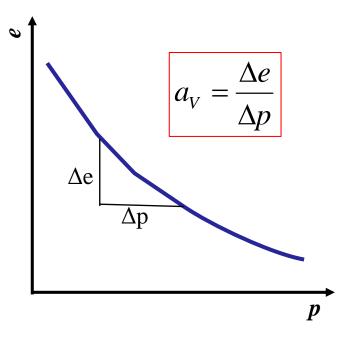
Determination of *Cv*

- Casagrande's Method
- Taylor's Method

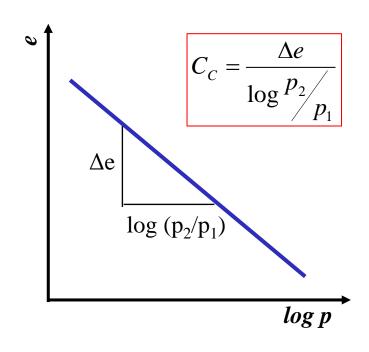

- Interpretation of Test Results -

Magnitude of consolidation \rightarrow compression index (Cc)

Rate of consolidation


 \rightarrow co-efficient of consolidation (Cv)

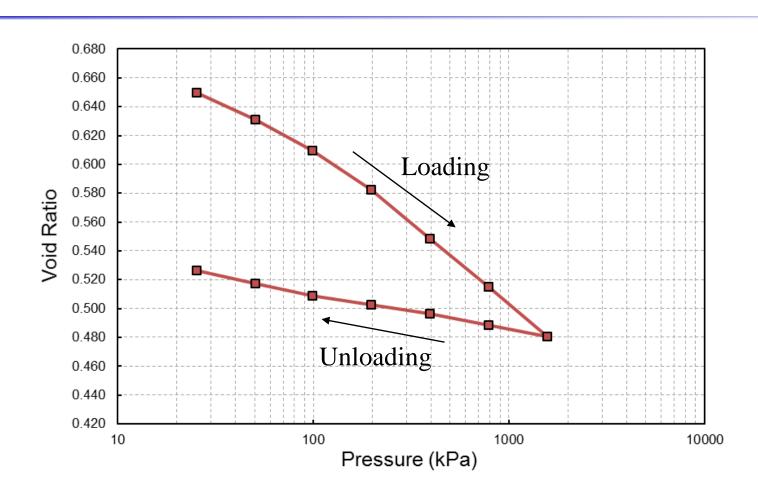
- 1. Time ~ Deformation curve
 - *i.* Cv (Coefficient of consolidation)
- 2. Pressure ~ Deformation curve
 - *i. Cc* (Compression index)
 - *ii. Cr* (Recompression index)
 - *iii.* a_V (Coefficient of compressibility)
 - iv. m_V (Coefficient of volume change)



Pressure ~ Deformation Curve

$e \sim p \text{ plot}$

$e \sim log p$ plot

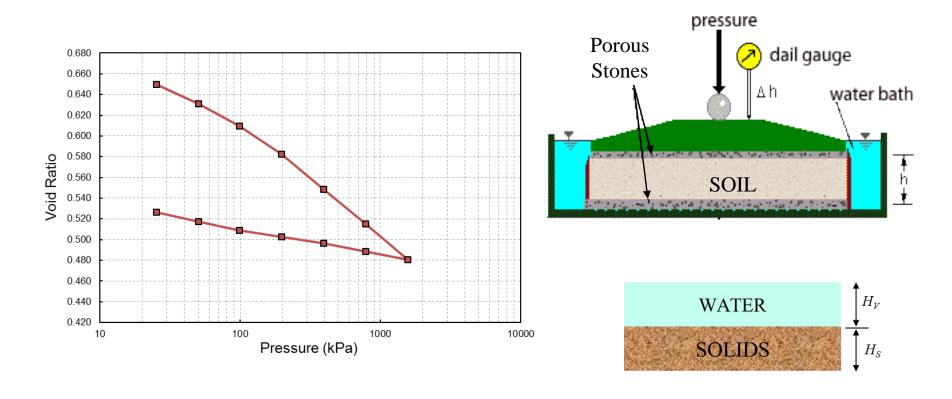

 a_V = coefficient of compressibility

Cc = compression index

 m_V = coefficient of volume change

$$m_V = \frac{a_V}{1 + e}$$

Pressure ~ Deformation Curve



Slope of loading part \rightarrow Compression Index (C_c) Slope of Unloading part \rightarrow Recompression Index (C_r)


Pressure ~ Void Ratio Curve

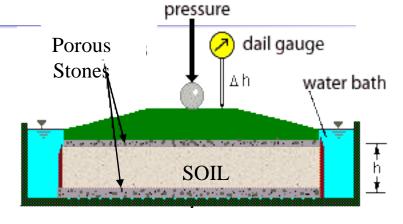
How to make ' $e \sim log p$ ' graph?

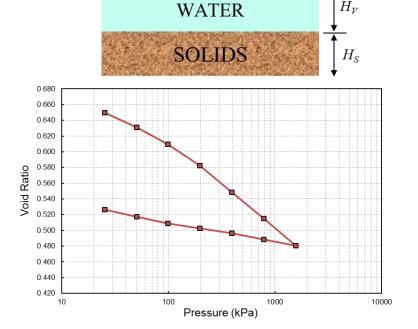
How to determine 'e' at every loading increment?

Pressure ~ Void Ratio Curve

 e_o = initial (or in-situ) void ratio

$$e_0 = \frac{V_V}{V_S} = \frac{A \cdot H_V}{A \cdot H_S} = \frac{H_V}{H_S}$$


$$e_0 = \frac{H - H_S}{H_S}$$

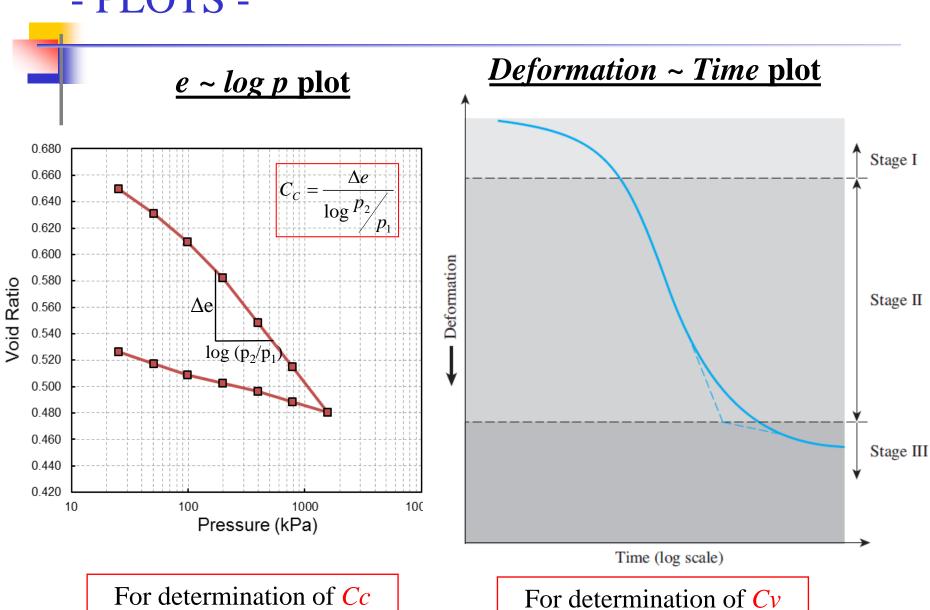

$$V_S = \frac{W_S}{G_S \cdot \gamma_w} \quad \longrightarrow \quad A \cdot H_S = \frac{W_S}{G_S \cdot \gamma_w}$$

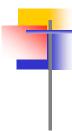
$$H_S = \frac{W_S}{G_S \cdot \gamma_w \cdot A}$$

Ws = *weight of soil solids*

$$W_S = \frac{W_T}{1+w}$$

Determined from over drying the specimen at the end of consolidation test.


- Calculations -


Sample Calculations

Ring Dia., D	=	6cm	Gs	=	2.65
Ring Height, H	=	2cm	W	=	15.3%
X-Area, A	=	$28.27\mathrm{cm}^2$	Dry Density	=	$15.47kN/m^3$
Initial Volume, V	=	$56.55\mathrm{cm}^{3}$	Wt. of Soil Solids	=	89.16g
Wt. of Ring	=	81 g	Ht. of Soil Solids, Hs	=	1.19cm
Wt. of Ring + Wet Soil	=	183.8g	Initial Void Ratio, e _o	=	0.675
Wt. of Wet Soil	=	102.8 g			
Initial Bulk Density	=	$1.82\mathrm{g/cm^3}$			
	=	$17.83 kN/m^3$			

					$e_1 = ((Ho-\Delta H_1)-Hs)/Hs$	
Load	Applied Pressure	Final DGR	$\Delta \mathbf{H} = \mathbf{DGR} \ \mathbf{x}$ \mathbf{LC}	$\Delta H_{(cum)}$	Void Ratio, e	Strain, ε
(kg)	(kPa)		(mm)			(%)
0	0.0	5000	-	1	0.67550	
0.05	1.91	4635	0.3650	0.365	0.64492	18.3
0.25	9.54	4412	0.2230	0.588	0.62624	29.4
1	38.17	4154	0.2580	0.846	0.60462	42.3
2	76.33	3831	0.3230	1.169	0.57757	58.5

- PLOTS -

CONCLUDED