DESIGN CONSIDERATION OF STRUCTURE

1: Strength: The ability of structure to support a specified
load without experiencing excessive load.

2. Deformability: The ability of structure to support a
specified load without undergoing appreciable deformation.

3. Stability: The ability of structure or structural member to
support a given load without experiencing a sudden change in
Its configuration (Buckling).

We define instability instead of stability

» Change in geometry of a structure or structural component
under compression , resulting in loss of ability to resist
loading Is defined as instability.



» Structure 1s in unstable equilibrium when small disturbance
produce large movements and the structure never returns to
Its original equilibrium position.

» Structure i1s In neutral equilibrium when we cant decide
whether it 1s In stable or unstable equilibrium. Small
disturbance cause large movements but the structure can be
brought back to its original equilibrium position with no
work.

» Thus, stability talks about the equilibrium state of the
structure.

Stable Equilibrium Unstable Equilibrium Neutral Equilibrium



» The definition of stability had nothing to do with a change In
the geometry of the structure under compression.

»Change in geometry of structure under compression that
results in its ability to resist loads called buckling.

» Buckling is a phenomenon that can occur for structures under
compressive loads.

Stability of equilibrium:
»As the loads acting on the structure are increased, the
equilibrium state become unstable.

» The equilibrium state becomes unstable due to:
Large deformations of the structure
Inelasticity of the structural materials



COLUMN

A column is a line element (long slender bar) subjected to
axial compression. The term is frequently used to describe a
vertical member.

» Structural members (i.e., columns) are generally stable when
subjected to tensile loading and fail when the stress in the
Cross section exceeds the ultimate strength of material.

»In case of elements (i.e., column) subjected to the
compressive loading, secondary bending effect e.g.,
Imperfections within material and/or fabrication process,
Inaccurate positioning of loads or asymmetry of cross
section can induce premature failure either in part of cross
section or of the whole element. In such case failure mode is
normally the Buckling.



Buckling is categorized into the following
1. Overall buckling
2. Local buckling
3. Lateral Torsional buckling

»The design of the most of the compressive members is
governed by over-all buckling capacity. i.e., the maximum
compressive load which can be carried before the failure
occurs due to the excessive deflection in the plane of greatest
slenderness ratio.

» Typical overall buckling occur in columns of frame structure
and in compression members of trusses




SLENDERNESS RATIO (L, /r )

It Is the ratio of the effective length of column (L,) to the
minimum radius of gyration (r;.) of cross sectional area.

» If the columns iIs free to rotate at each end then buckling
takes place about that axes for which the radius of gyration Is
minimum.

TYPES OF THE COLUMNS

The compression elements (Columns) are sub-divided into the

following three categories.

1. Short Column

The column which has a relatively low slenderness ratio Is

called the short column (e.g., length of member Is not greater

than the 10 time to the least cross sectional dimension).

» Failure occur when stress over the cross section reaches the
yield or crushing value of the material.




»Such element fail by crushing of material induced by
predominantly axial compressive stress (flexure stresses are
not dominant).

2. Slender Column

The column which has a relatively high slenderness ratio is

called the slender or long column (e.g., length is greater than

the 30 time to the least cross sectional dimension).

»Such element fail due to excessive lateral deflection (i.e.,
buckling) at a value of stress considerably less than the yield
or crushing value.

»In slender column flexure stress are dominant and
compressive stress are not too important.

3. Intermediate Column
The faillure of columns Is neither short nor slender and occur
due the combination buckling and yielding/crushing.



» For Intermediate column Length is in between 10 to 30 time
to the least cross sectional dimension.

Ideal Column

An ideal column has the following properties.

1. Its is prismatic (having the constant cross section through
out the length).

2. Material Is homogeneous.

3. Loading Is perfectly axial.

4. Pin ended condition (simply supported) are frictionless.

Real Column

1. Imperfection are present (i.e., structural and geometric)

2. Its not perfectly prismatic

3. Centroid may not lie on line joining the centroid of the end
section.

4. Load is not acting along the centroidal line.



Stress In Eccentric Column
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CRITICAL LOAD OF COLUMNS

The critical load of as slender bar (columns) subjected to axial
compression Is that value of the axial load that is just sufficient
to keep the bar a slightly deflected configuration.

Case-1: P < P,
Stable Equilibrium and No Buckling
Case-11: P =P,

P<P P=P
Equilibrium State and Slight deflection l
P<P

cr

Case-111: P> P,
Unstable State and Buckling

IIFJ
"/,{ Instable equilibrium

B
i —'T

Neutral equilibrium

I~ Stable equilibrium

) i



EULER FORMULA FOR PIN ENDED COLUMN

In 1759 a Swiss mathematician Leonhard Euler developed a
theoretical analysis of premature failure due to buckling.

Let suppose a pin ended
column AB of length L is
subjected to a slight
bending. Since column can
be considered a beam
placed in vertical direction
and subjected to axial load,
thus deformation at any
point of column can be
represented by equation of
elastic curve. - x

11



d2y Here In figure, bending moment at

El o M (1) point Q having co-ordinate (X , Y)
X can be represent as given in Eqgn.
M=—-P.y (2) (2). The negative sign indicate the
negative bending moment.
dzy 2 P
= —P. et K =— 4
1= El i P.y o (4)
d’y P.y d®y 2
o @ | @= S+kiy=0 (5

Eqn. (5) represent a second order Homogeneous Differential
Equation for simple harmonic motion and general solution
of the equation is given as Egn. (6)

y = Csin kx+ D cos kx (6)



Coefficient C & D can be determined by applying the
boundary condition.

At End A: X=0&y=0 At End B: X=L&Yy=0
(6) = 0=Csin(k0) + Dcos(k0) | (6) = 0=CsinkL+0coskL
D=0 0=CsinkL (7)

In Egn. (6) either C = 0 or sinkL=0. if C = 0 it will be zero
everywhere along the column and we will have a trivial
solution (member will be straight for any loading) the only

sinkL=0 (8) @)= k= |
El
To satisfy the Egn. (8) P
9) = \/:.L=n72'
KL=nx (radian) (9) El
n=1,23, .. P-TTE o)




n values of 1, 2, 3, represent the buckling
shape (eigenvalue) corresponding to 1%,
2nd and 3 buckling mode shape,
respectively.

The smallest (critical) value load, P,
occurs when n = 1, which corresponding
to first (least) buckling mode.

‘“’ct- ‘91”“

cr 2
L FIG. 10.4 First three buckling
mode shapes of a simply supported
column.

The Eqgn. (11) is called the Euler formula and deflection
corresponding to this load Is

(6) = y =Csin kx=Csin1/%x (12)

P = (12)




Substituting the value of P from Eqn. (11)

2 T.X

I X= ASII’]T (13)

EIL

(12)= y=Asin

Eqn. (13) represents the equation of elastic curve after the
column has been buckled. From the equation (13) deflection
will be maximum when

If sin%:l (13)= y =A

Above solution Is indeterminate this Is due to the fact that
differential Egn. (2) used Is the linearized approximation of
actual differential equation.

If P<P_, the condition sin(x/L) = 0 cannot be satisfied then
we must have C = 0 as only In this case configuration of
column will be straight, which is stable condition.



INFLUENCE OF END CONDITION

Effective Length (L,)

It is the length of the column corresponding to the half sine

wave or length between the point of contra-flexure.

»The Euler critical load for fundamental buckling mode
depends upon the effective length.

Effective Length Factor (K)
It Is the ratio between the effective length and original length

K = =
L
— L =KL

» The Factor K depends upon the end/boundary Condition of
the column



Effect of K-factor on Critical Buckling Load

(a) Pinned-pinned column

(b) Fixed-free column

(¢) Fixed-fixed column

(d) Fixed-pinned column
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Critical Stress (o, )

It Is the stress corresponding to the Euler Critical Load and can
be calculated as following.

P, #°El n’E
Oy =— = =

_ _ 14 o1 = Ar?
TOA LA (L) (14)

Critical Stress (o, ) for Slender Column

The critical stress for slender columns may be fixed by
dividing proportional or yield stress by factor of safety and
corresponding limiting slenderness ratio can be determined by
using the Eqn. (14).

O

_ p 2 3
Let o, = =05, (14) = 200= T ZOOX];O
250 (L, /r)
O =10 25=200 MPa = L /r=100



Alternatively
For slender columns, Length > 30(least X-sectional dimension)

Assuming a rectangular cross-section of bxh.

- /Imin _\/hb3/12_ b | et L. —100
min A bh 2\/5 Fin

L, 300 ~ 7%200x10°

== ~103 o
rmin b/2\/§ : (100)2

~ 200 MPa

Critical Stress (o, ) for Short Column

For Short columns critical stress is taken equal to the crushing or
yield stress and slenderness ratio may be fixed by considering
the, Length = 10 (least X-sectional dimension)

L. _ 10b ~34.6 Let = =30

rmin - b/2\/§ If'min




Example 10.01 (Bear & Johnston 61" Ed.)

A 2.0 m long pin-ended column of square cross section Is to be
made of wood. Assuming E =13 GPa, a,,, = 12 MPa, and using
a factor of safety of 2.5 in computing Euler’s critical load for
buckling, determine the size of the cross section if the column
IS to safely support.

a) A 100 kN load

b) A 200 kN load

Data

o, = 12 MPa, E =13 GPa
F.O.S. =25

L=20m

Size of square column, b = ?




la) For the 100-kN Load. Using the given factor of safety, we
make

P, =25(100kN)=250kN L=2m E=13GPa
in Euler’s formula (10.11) and solve for I. We have
P.L%2 (250 X 10° N)(2 m)’
#E 7413 X 10° Pa)

Recalling that, for a square of side a, we have I = a*/12, we write

[ = = 7.794 X 10" °m?

4
(l

o 7794 X 10°°m* 4 =983 mm = 100 mm

We check the value of the normal stress in the column:

P 100 kN
o= = _ = 10 MPa
A (0.100 m)

Since o is smaller than the allowable stress, a 100 X 100-mm cross section
is acceptable.



(b) For the 200-kN Load. Solving again Eq. (10.11) for I, but
making now P, = 2.5(200) = 500 kN, we have

I=15588x 10 %m?
4

| )

I = 15.588 X 10 ° a = 11695 mm

o

The value of the normal stress is

P 200 kN
o=—= —— = 14.62 MPa
A (0.11695 m)

Since this value is larger than the allowable stress, the dimension obtained
is not acceptable, and we must select the cross section on the basis of its
resistance to compression. We write
P 200 kN
T a1 12 MPa
a® = 16.67 X 107° m? a = 129.1 mm

= 16.67 X 10> m>

414 —

A 130 X 130-mm cross section is acceptable.

22



.. FOR INTERMEDIATE COLUMNS

Tangent Modulus Theorem (Inelastic Buckling)

By this method a modified version of Euler equation is adopted
to determine the stress-slenderness relationship in which the
value of the modulus of elasticity is given at any given level.

Consider a column manufactured from the a material, whose
stress-strain curve Is shown in the figure below.

The slope of the tangent to the
stress-strain curve at any stress
value ¢ (o Is greater than a5, and IS
within the Inelastic range) is equal
to the value of Tangent Modulus of
Elasticity, E..

E, Is different from the E which is
the value at Elastic limit.




» The value of E; can be used is Euler equation to calculate
the modified slenderness corresponding to any successive
value of .

»The curve for to intermediate column can be plotted by
obtaining the slenderness value corresponding the any
successive stress value (e = o) ranging between than o,
and o, or crushing value .

o = n°E, _ Le _ 7°E,
(L /) r o

cr

(15)

» Although, the nonlinearity of the stress-strain diagram
beyond the proportional limit is considered in Egn. (15), Its
theoretical basis is somewhat weak. Therefore, this equation
should be viewed as an empirical formula. However, the
results obtained from Equation are in satisfactory agreement
with experimental results.
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Rankin-Gordon Formula

Euler formula is only suitable for the slender columns with
small imperfections. In practice, most of the intermediate
columns fail due to the combined effect of compression and
flexure and experimentally obtained results are much less than
the Euler prediction.

Gordon suggested an empirical formula based on the
experimental results to predict the load of intermediate
columns, which was further modified by Rankin.

According to Rankin intermediate columns/members fail due
to buckling and compression to more or less degree and load
carrying capacity of such member can be calculated as
following.

el + = P,=—-° = - (16)



In Eqgn. (16) For pin endded column
Pr = Rankin — Gordon buckling load 72El
P, = Euler buckling Load e = L2
P. = Ultimate compressive load P.=cA or oA
o, .A o, .A A
16)= PR = ; = : 2 = % 2
o,.A o.,.AL o L
1+ — ; 1+ 1+ =
T2El /L, 7°E(Ar?) 7 E
o,.A
= (d7)
(L)
r a = Rankin constant, which
B depends upon the boundary
- EZE condition and material properties




Graphical Presentation of Rankin Formula

Fuler

Stiuts

[
-

|
|
|
30 100 KL /r

>
Rankin constant for various Materials
Material 6, (MPa) Rankin constant, a
Mild Steel 325 1/7500
Wrought Iron 250 1/9000
Cast Iron 560 1/1600
Timber 35 1 /3000




Example Problem

A cast Iron column of 200 mm external diameter is 20 mm
thick and 4.5 m long. Assuming the both end rigidly fixed,
calculate the safe load using Rankin Formula if Rankin

constant, a =1/ 1600, G, = 550 MPa F.O.S. =4.0.

Data

o, = 550 MPa,, F.O.S.=4.0

D, =200.0 mm K = 0.5 ( both Ends fixed)
t=20 mm a= 1/1600

P = Pr/ FOS

Gy.A




AISC SPECIFICATIONS FOR STEEL COLUMNS

American Institute of Steel Construction (AISC) specifies two
method for the computation of the compressive strength of the
columns. Both design specification bound the maximum
slenderness ratio equal to 200.

1. Allowable stress design (ASD)
2. Load and Resistance Factor Design (LRFD)

1.0 Allowable stress design (ASD)

It Is the old method and according to this method columns
made of structural steel can be designed on the basis of
formulas proposed by the Structural Stability Research
Council (SSRC). Factors of safety are applied to these
formulas.




» It consider only intermediate (short) and long column and
there i1s no straight portion between the stress~slenderness
ratio curve. A specific slenderness ratio value R, Is used to
differentiate between the slender and intermediate (or short)
column.

» Experimental studies showed that compressive residual
stresses can exist In rolled-formed steel sections their
magnitude may be as much as one-half the yield stress.
Consequently, if the stress in the Euler formula is greater o,
/2 then equation is not valid. Thus, limiting slenderness
ratio R, for the long columns can be determined by putting
the o, = 6, /2 In Euler Equation.

o, rn’E L. |#’E

— = R 18
2 (Le/r)2 “r o (18)




Slender Column

If ZOOZEZRC Its long column
r

In long column allowable stress can be calculated through
the Euler equation divided by the Factor of safety.

(19)

o °E 1 12 7°E
%al T Eog T

af — .
(L. /r)? ) FOS 23" (L, /1)?
Short Column

If 5<RC Its short/ Intermedioate column

r

The short column are designed on the base of an empirical
formula which Is parabolic in form and maximum stress by
this formula is given as following.




0

O oy = El—

Short
column

/

(L /r)
2R’

C

Fosz§+§(Le”j—
3 8| R

O
o= 2m (D)
all FOS ( )

Slender
column

>

1(L,/r)

8

c

KL /r

Jay (20)

~ (21)

C

FOS becomes 5/3 or 1.67 when
L./r = 0 and increases to 1.92 or
23/12 at slenderness value equal
to R..

All the above equation may be
used both In SI and FPS
System.



» Example

The A-36 steel W8 X 31 member shown in Fig. 13-8 is to be used as a
pin-connected column. Determine the largest axial load it can support
before it either begins to buckle or the steel yields.

12 ft

34



Wide-Flange Sections or W Shapes FPS Units

From the table in Appendix B, the column’s cross-sectional area and
moments of inertia are A = 9.13in°, [, =110 in*, and I 5 = 37.1in*
By inspection, buckling will occur about the y-y axis. Why? Applying

Web Flange _ _
Area | Depth | thickness | width | thickness e Yy s
Designation | A d t, by t; I 5 r ] 5 r
in. % lb/ft in’ in. in. in. in. in® in® | in. in* | in in.
W8 x 67 197 0.00 0.570 8280 | 0935 | 272 | o04 | 372 | B&e | 214 | 112
W8 x 58 171 8.75 0.510 8220 | 0810 | 228 A0 | 365 | 751 | 183 | 210
Wa « 48 141 8.50 (1,400 8110 | 0685 | 184 | 433 | 361 | 609 | 150 | 208
W8 x 4l 11.7 8.15 0.360 BOT0 | 0560 | 146 | 355 | 353 | 4901 [ 122 | 14
W8 x 31 913 | 800 0.285 795 1 043 | 10 205 | 347 | 311 92T 102
Wa 24 T08 | 793 1245 0495 | 0.400 818 | 209 | 342 | 183 | 563 14l
W8 x 15 444 | &1l 0.245 4015 | 0315 480 | 1.8 | 329 | 341 L70| 0876

35



2 7[29(10%) kip/in®|(37.1 in*
Pcr:wbz?]: [ (. ).p/. It 2 )2512kip
L [12 ft(12 in./ft)]

When fully loaded, the average compressive stress in the column 18

P. 512kip

= 56.1 ksi

Ocr o _ .
A 913in?

Since this stress exceeds the yield stress (36 ksi), the load P is
determined from simple compression:

= P .
9.13 in*’

36 ksi P =329 kip Ans.

36



ECCENTRICALLY LOADED COLUMN
(SECANT FORMULA)

In practice It is difficult to apply the end thrust (axial load)
along the longitudinal centroidal axes of columns. In such case
we have to consider the effect of eccentrically applied load “P”

on a prismatic column of flexural stiffness El.

:
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\I.“- = P(’
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M, =Pe
AN Va= PN
\ A(:
Mo =M, +P.y
M, =P(e+y)
v
y—h-
Mp= Pe x
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d’y
dx?

My, =-P(e+y) (23)

El

- M (1)

2

()= El ‘; Y — _P(e+Y)

X2

d’y Py__Pe
dx* El El

Suppose axial load Is acting at an
eccentricity “e” from the weaker
axes (y-axis) the equation of elastic
curve and moment at any arbitrary
point Q can be given in Egn. (23).

Let K2 =g (4)
d’y
(24)] (24) = ot k’y=—k’e (25

The complete solution of Eqgn. (25) Is given as following

y =Csinkx+ Dcoskx—e (26)

\

J\ J

|

|

General solution Particular solution



Coefficient C & D can be determined by applying the
boundary condition.

At End A: X=0&Yy=0
(26) = 0=Csin(k0)+ Dcos(kO)—e = D=e
At End B: X=L&Yy=0

(26) = 0=CsinkL+ecoskL—e - sin kL=25in&cos&
CsinkL=e(l-coskL) 2 2

, KL
C(Zsin%cos%j_ (ZSIH %) " (1-coskL) = 2sin* >

kKL
C= etan7 Substituting the value C & D in Egn. (26)

y = e{tan %sin KX+ COS kx—l} (27)



The Egn. (27) represents the equation of deflection (y) at any
point (x) along the columns. The value of maximum deflection
(Ymay) CanN be calculated by setting x = L /2.

(27)= vy, =€ tan&sin&ﬂzos&—l}
2 2 2

y =€ The Eqn. (29) shows that (y,.,)

- becomes infinite when P =P,.

KL _ i

Vi =€ sec;?—l} (28) 2El L
Yimax = €| SEC —— (-1

EIL® 2
P - _

@)= k= :
El y .. =6 secz—l}

2
P L -
— 1/—— 1] (2
i {SG{ El zj } (29) sec%:oo

[ sin2kL/2+cos?kL/?2 4
coskL/2




In actual cases deflection does not become infinite even the
load exceed the elastic limits also P should not be reached to
the P, (Euler critical load)

2 2
p =TE g ofek b
L l

T

0—('

Replacing the value of EI in ‘“4‘
Eqgn. (29) )

y . =€ Sec Pz” L -1
e PcrL2 2

Source of eccentricity Iin

Yimax = € sec% /Pi —1} (30) column

Note: In above equation secant angle Is in radians




MAXIMUM STRESS IN ECCENTRIC COLUMN

The maximum stress o, Occurs in the section |
of the column where the bending moment is My= PPN
maximum, 1.e., In the transverse section
through the midpoint C, and can be obtained
by adding the normal stresses due to the axial
force and the bending couple exerted on that '
section ]

M. =P(y,, +€)

_ P M XC gy,

A | Y =e[sec%—1}
P N P(Y,., +€)xC

O max 2
A Ar OR vy, =e{sec7; /Pi —1}

O

42



o = P N P(Y,. +€)xcC
A Ar®

O o :E 1+
A_

O oy _P 1+<sec&—1+
Al 2
P, ec kL

Omax = |1+ —5€C—
Al r 2

)

( kL j }c
e| sec——1 ter—
\ 2 r
ec
F

(32)

|

e = eccentricity of loading

¢ = distance from the N.A.
to extreme fibres

r = radius of gyration

A = cross-sectional area of
column

Replacing the value of kL /2 as following KL \/EE :”\/?
2 VEI 2 2\P,

(32) =

O

max

(33)




» The Eqgn. (33) can be used for any end condition as long as
the appropriate (K) value is used to calculate P.,.

» Since o,,,, does not vary linearly with load P, the principal
of superposition is not applicable to determine the stress due
to the simultaneously application of applied loads.

» For the same reason any factor of safety should be used with
load not the stress.

32)= o, _P 1+%se<:1/EL
Al T El 2 s | =Ar?

P ec P L,
Omax = —|1+—S€c > ec o _

A r EAr< 2 — = Eccentrici ty ratio

r
1+§SGC l ii 5 € = Euler angle
r> | 2VEA r EAr= 2




The formula given in Eqn. (33) Is referred to as the secant
formula; it defines the force per unit area (P/A), that causes a
specified maximum stress (o,.,) In a column of given
effective slenderness ratio (L, /r), for a given value of the
eccentricity ratio (ec/r?).

> If the material properties, the dimensions of the column, and
the eccentricity e are known then we have two variables in
the secant formula: P and &,,,,,. If P Is also given, &, can be
computed from the formula without difficulty.

» On the other hand, If &, Is specified, the determination of
P Is considerably more complicated because Egn. (33),
being nonlinear in P, must be solved by trial-and-error.

» The secant formula is chiefly useful for intermediate
values of L, /r. However, to use It effectively, we should

know the value of the eccentricity e of the loading

max
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»>Due to Imperfections In manufacturing or specific
application of the load, a column will never suddenly
buckle; instead, It begins to bend.

> The load applied to a column is related to its deflection
In a nonlinear manner, and so the principle of
superposition does not apply.

> As the slenderness ratio increases, eccentrically loaded
columns tend to fail at or near the Euler buckling load.

e=10 [deal column
(small deflections)

Inelastic behavior

~ o 1s reached




Exercise: Plot the load-displacement curves of a rectangular column
for the given data with eccentricity ranging from 5-25 mm.

Data
L=25m K=1.0, A =30x60 mm?, e=5-25mm

Solution | = 60x303/12= 135,000 mm¢*, r,. = 8.66 mm

2 3 3 |
p _7 x200x10° x135x10 42 64kN V. :e{seokl'—l}:e{secﬂ P_l}
g (1x 2500)° 2 2\ PRy

P (kN) | Sec(kL/2) y (mm)

0 e e=15 |e=20 [e=25

I
ol
D

I
|
o

10

20

30

40

42.64




Problem 13.53
(Mech. of Materials by RC Hibbler, 8t Ed)

The W200x22, A-36-steel column is fixed at
Its base. Its top Is constrained to rotate about
the y—y axis and free to move along the y-y
axis. Also, the column is braced along the x—x
axis at its mid-height. Determine the
allowable eccentric force P that can be
applied without causing the column either to AP
buckle or yield. Use against buckling F.O.S. =
2.0 and F.O.S. = 1.5 against yielding.

For W250x58 Section

A= 28600 mm? . =20x10°mm#,  r, =83.6 mm
e =100 mm, y = 1.42x10° mm?, r, =22.3 mm
d =200 mm, 0; =102 mm, E =200 GPa




Section Properties. From the table listed in the appendix, the necessary section

properties for a W200 X 22 are

A = 2860 mm? = 2.86(107) m’

I, = 20.0(10%) mm* = 20.0(107¢)m* c==

e = 0.Im

ry =223 mm = 0.0223 m

by 102
L 2 51 mm = 0.05] m

Buckling About the Strong Axis. Since the column is fixed at the base and free at

the top, K, = 2. Applying Euler’s formula,

+EI ﬂzlzoﬂ( 10°) :|[2(]_{]( 10-9) ]

L= - = 98.70kN
(KL),? [2(10)]?

Euler’s formula is valid if o, < oy.

P, 9870(10°)

To = —L = — = 3451 MPa < gy = 250MPa
A 2.86(1073)
Then,
P, 9870
= = = 49 3
Patow = ¢~ = —5 — = 49.35kN

O.K.
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Yielding About Weak Axis. Since the support provided by the bracing can be
considered a pin connection. the upper portion of the column is pinned at both of its
ends. Then K, = 1 and L = 5 m. Applying the secant formula,

Pmax 1+ ec sec (KL)F max
or = —
max = Ty r,2 2r, \ EA

o) Ponas 0.1(0.051) 1(5) \f Proas
250(10F) 2.86(1073) LT 00y % 200223) 200(10°)[2.86(1073)]

— —

250(10°) = ; Si’_‘ll:‘_s) 1+ 102556 sec 4.6875(1073)V/ Pm]
00D -

Solving by trial and error,

P... = 39.376kN

Then,

Poax 39376
Palow = 1 5 = 15 = 26.3kN (controls) Ans.




Problem 13.61
(Mech. of Materials by RC Hibbler, 8t Ed)

The W250x45, A-36-steel column is
pinned at its top and fixed at its base.
Also, the column is braced along its
weak axis at mid-height. If P= 250 kN,
Investigate whether the column Is
adequate to support this loading. Use
buckling F.O.S. = 2.0 against buckling
and against F.O.S. = 1.5 yielding.

For W250x45 Section

A= 5700 mm? r, =112 mm
l, = 7.03x10° mm*,

d =266 mm, b, =mm

P
— P
41 N
S A
250 mm 250 mm

NI —

| -

E =200 GPa



Section Properties. From the table listed in the appendix, the necessary section
properties for a W250 X 45 are

A = 5700 mm? = 570107 ) m? re=112mm = 0112m
d 266
—_7m[106 4 _ 100113 _ _— _ " _ 1 —_n12
I, = 7.03(10°)mm* = 7.03(10)m c=5 == =13%mn = 013m
g . 250
The eccentricity of the equivalent force P* = 250 + Vi 3125kN s
5
250(025) - 22 (025)
€= 4 =0.15m
250 + 20 E
T
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Buckling About the Weak Axis. The column is braced along the weak axis at
midheight and the support provided by the bracing can be considered as a pin. The
top portion of the column is critical is since the top is pinned so K, =1 and

L = 4 m Applying Euler’s formula,
w’El,  «[200(10°)][7.03(1076)]

P, = = , = 867.29kN
(KL),? [1(4)]

Euler’s equation 1s valid only if o, < ay.
P 867.29(10°)
A 570(107)

= 152.16 MPa < oy = 250 MPa

Ter =

Then,

. P, 86729

=< = = 433.6
ow = T = — — = 433.65 kN

Since Py, = P'.the column does not buckle.

O.K.
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Yielding About Strong Axis. Since the column is fixed at its base and pinned at its

top, K,=0.7 and L=8m. Applying the secant formula with
Phax = P'(ES.) = 312.5(1.5) = 468.75kN

P:TIEL‘-[ 1 4 ec (K‘L)I P:na:-:
— ]
Tmax T T T o, VEA

4e875(10°) -, 015(0133) [[].7(3] \/ 468.75(10°) }
- 570107 0112 2011) V o00(107)[5.70(1079)

= 231.84 MPa

SINce Ty < oy = 230 MPa, the column does not yield.



INITIALLY CURVED COLUMN
(PERRY - ROBERTSON FORMULA)

»In practice a column cannot be made perfectly straight anc
P.. 1s never reached. Consideration of small deviation from
the straight configuration makes the analysis more realistic.

»According to Perry-Robertson Formula, all practical
Imperfections (e.g. properties of the real columns) could be
represented by a hypothetical initial curvature (a,) of
column.

Let consider a columns AB of length L has an initial
Imperfection y, prior to the application of load and y Is the
additional deformation due to the applied load P. the equation
of the elastic curve for any arbitrary point Q can be represented
as following.
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d?y P
El 5 =M (1) Al

Mo =-P(y,+Yy) (39

2

O= El ‘; Y P(y, +Y)

X2
2 L
d¥+Py:_Pyo (36)
dx El El
P
Let  k2=— (4)
El ~ ~
d2y , : X—L,y—OO
(36):> F‘Fk y:—k yO (37)
X

Yo = Initial deviation of the column and
IS represented by the sinusoidal curve

Yy, =a, sin % (38)



2

(37) = d y+k2y:—k2aosin% (38)

X2

The complete solution of Eqn. (38) Is given as following

2
K8, in ™ (39)

)
L
Applying the boundary condition

AtEndA: x=0&y=0 AtEndB: x=L&y=0

. k‘a .7l
(39) = 0 = Csin(k0) + D cos(k0) — 0 O—CSInkL+OcoskL[ %0 jsm

y =Csinkx+ D coskx—

T
— D=0 Lz—kz

In Eqn. (40) either C or sinkL is zero 0=CsinkL (40)

Assuming k any non-zero value (as deflection will always be
due to some applied load P) we must have C=0



Substituting the values of C and D in Eqn. (39)

k°a, 7X a,

(39)=> y= o sin == 7— sin k2:£

2 X El

2
El

__ % X A X Przﬂ
y= pr=: sin 1 _(Pcr_ jsm 1 (41) c | 2

1P P

For pin ended column the deflection Is maximum (y,) at
center when x = L/2

a, Sin7z(L/2) B a,

R
P P

In Egn. (41) & (42) y and y,, are the additional deflection due
to the applied P as compared to the initial deflection a,

(4)=

(42)



Using Eqn. (42)

if P=0.2P, = y_=0.253, p ="
if P=05P, = y_=a,
if P=0.75P, = y_=3a,

if P=0.9P, = y_=09a,

—— > |
J m

if P=P, = Y= Load-deflection Curve of initially

curved column

» The relationship of P and y,, as shown in the figure depicts
that the initially deformed columns fails before reaching the
P.. (Euler critical load) and y,., Increases rapidly with the
Increase of load P.

» At any definite displacement before the failure the Eqgn. (42)
be written as following.



s}
(42):>ym(i_ j:ao A / P

P Vm

e _ Yo _ Ym , @
ym F_ ym - aO — P - Pcr T Pcor l/fjﬂ,
Relating with the equation of -
straight Line I ju,;,/ P,

y = MX + C —— , > )

a

Yo || L B -
(P j_[Pﬂjy“[Pﬂj (43) South-Well Plot

»The values of y_ /P and vy, are plotted from a column test
then these variables can be related by a straight line.

»While plotting initial values may be discarded (40% to 80%
data may be plotted).

» This plot Is called the South-well plot and it is used to
determine the initial deflection of a column, experimentally.




Total deflection at any distance x Is given as

_|_

. 7
Yi=Y+Ye = aos'nL

. 7IX P A . X[ o
= a, SIn £ _|— = a,sIn cr 44

Displacement will be maximum at x =L /2

e = a5 ) f o

Oy — 0O Oy — 0O

(45)




MAXIMUM STRESS IN DEFLECTED COLUMN

The maximum stress o

MmaxX

occurs in the section of the column
where the bending moment or displacement is maximum.

UW:P+MWX (46)
A I
o P PO,
A Ar?
Pa[ Oor ]xc
P O,—O
O-max: +
A Ar2
P a,cC| o
O oy = —
A{ (G —Gﬂ

o = a{1+ 77( T ﬂ (47)
c,—O

a,C
n =—> = Initial deflection ratio
(2

o =averge applied stress

o, = Euler critical stress

If applied load P Is given the
maximum  stress can  be
determined by using the Egn. (47)
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If &, are specified then to determine the safe applied load
the Eqn. (47) Is to transformed in term of applied stress 6.

(47):>Gmaxza|:1+77( Oor j:|20(acr_0+acr77]
o, —O o,—O

B 2
O max '(Gcr o O-) =00, —0O + OO0 .. 1]

02 o G(Gmax + GCI’ + Gcrn)_i_ Gmachr — 02 o G[Gmax + (1+ GCF)T]]+ Gmaxacr — O
1

O = E [Gmax + (1+ n)acr ]_ \/% [Gmax + (l+ U)O-cr ]2 ~ OmaxOcr (48)

» \We need not to consider positive square root since we are only
Interested in smaller values of square roots in the Eqn. (48).

» This equation represents the average value of stress in the cross-
section at which the maximum stress would be attained at mid-
height of the column for any given value of #.



To determine the average applied stress (¢) at which yield
occurs then o, IS replaces by the o,

o= % [ay +1+7n)o,, ]— \/% [Gy +1+7n)o,, ]2 — 0,04 (48)

Experimental evidence obtained by Perry and Robertson
Indicated that for a mild steel the hypothetical initial curvature
of the column could be represented as following.

L
n = 0.003? (49) 0 <0, <0,

It is that value of slenderness ratio when the yield stress is
first attained in one of the extreme fibres.

1 L 1 L, T
GZE Gy+(1+0'003?)0-cr V2 c7y+(l+0.003?)o'¢Ir -o,0,  (50)
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