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1: Strength: The ability of structure to support a specified

load without experiencing excessive load.

2: Deformability: The ability of structure to support a 

specified load without undergoing appreciable deformation.

3: Stability: The ability of structure or structural member to

support a given load without experiencing a sudden change in

its configuration (Buckling).

DESIGN CONSIDERATION OF STRUCTURE

We define instability instead of stability

 Change in geometry of a structure or structural component 

under compression , resulting in loss of ability to resist 

loading is defined as instability.



Structure is in unstable equilibrium when small disturbance

produce large movements and the structure never returns to

its original equilibrium position.

Structure is in neutral equilibrium when we cant decide

whether it is in stable or unstable equilibrium. Small

disturbance cause large movements but the structure can be

brought back to its original equilibrium position with no

work.

Thus, stability talks about the equilibrium state of the

structure.

Neutral Equilibrium Stable Equilibrium Unstable Equilibrium 



The definition of stability had nothing to do with a change in

the geometry of the structure under compression.

Change in geometry of structure under compression that

results in its ability to resist loads called buckling.

Buckling is a phenomenon that can occur for structures under

compressive loads.

Stability of equilibrium:

As the loads acting on the structure are increased, the

equilibrium state become unstable.

The equilibrium state becomes unstable due to:

 Large deformations of the structure

 Inelasticity of the structural materials



COLUMN

A column is a line element (long slender bar) subjected to

axial compression. The term is frequently used to describe a

vertical member.

Structural members (i.e., columns) are generally stable when

subjected to tensile loading and fail when the stress in the

cross section exceeds the ultimate strength of material.

In case of elements (i.e., column) subjected to the

compressive loading, secondary bending effect e.g.,

imperfections within material and/or fabrication process,

inaccurate positioning of loads or asymmetry of cross

section can induce premature failure either in part of cross

section or of the whole element. In such case failure mode is

normally the Buckling.



Buckling is categorized into the following
1. Overall buckling

2. Local buckling

3. Lateral Torsional buckling

The design of the most of the compressive members is

governed by over-all buckling capacity. i.e., the maximum

compressive load which can be carried before the failure

occurs due to the excessive deflection in the plane of greatest

slenderness ratio.

Typical overall buckling occur in columns of frame structure

and in compression members of trusses



SLENDERNESS RATIO (Le /rmin)

It is the ratio of the effective length of column (Le) to the

minimum radius of gyration (rmin) of cross sectional area.

If the columns is free to rotate at each end then buckling

takes place about that axes for which the radius of gyration is

minimum.

TYPES OF THE COLUMNS

The compression elements (Columns) are sub-divided into the

following three categories.

1. Short Column

The column which has a relatively low slenderness ratio is

called the short column (e.g., length of member is not greater

than the 10 time to the least cross sectional dimension).

Failure occur when stress over the cross section reaches the

yield or crushing value of the material.



Such element fail by crushing of material induced by

predominantly axial compressive stress (flexure stresses are

not dominant).

2. Slender Column

The column which has a relatively high slenderness ratio is

called the slender or long column (e.g., length is greater than

the 30 time to the least cross sectional dimension).

Such element fail due to excessive lateral deflection (i.e.,

buckling) at a value of stress considerably less than the yield

or crushing value.

In slender column flexure stress are dominant and

compressive stress are not too important.

3. Intermediate Column

The failure of columns is neither short nor slender and occur

due the combination buckling and yielding/crushing.



For Intermediate column Length is in between 10 to 30 time

to the least cross sectional dimension.

Ideal Column

An ideal column has the following properties.

1. Its is prismatic (having the constant cross section through

out the length).

2. Material is homogeneous.

3. Loading is perfectly axial.

4. Pin ended condition (simply supported) are frictionless.

Real Column

1. Imperfection are present (i.e., structural and geometric)

2. Its not perfectly prismatic

3. Centroid may not lie on line joining the centroid of the end

section.

4. Load is not acting along the centroidal line.
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CRITICAL LOAD OF COLUMNS

The critical load of as slender bar (columns) subjected to axial

compression is that value of the axial load that is just sufficient

to keep the bar a slightly deflected configuration.

P < Pcr

P < Pcr

P = Pcr

P = Pcr

d

P > Pcr

P > Pcr

Case-I: P < Pcr

Stable Equilibrium and No Buckling

Case-II: P = Pcr

Equilibrium State and Slight deflection

Case-III: P > Pcr

Unstable State and Buckling



EULER FORMULA FOR PIN ENDED COLUMN
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In 1759 a Swiss mathematician Leonhard Euler developed a 

theoretical analysis of premature failure due to buckling.

Let suppose a pin ended

column AB of length L is

subjected to a slight

bending. Since column can

be considered a beam

placed in vertical direction

and subjected to axial load,

thus deformation at any

point of column can be

represented by equation of

elastic curve.
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Here in figure, bending moment at

point Q having co-ordinate (x , y)

can be represent as given in Eqn.

(2). The negative sign indicate the

negative bending moment.
)2(.yPM 

)3(0
.

.)1(

2

2

2

2





EI

yP

dx

yd

yP
dx

yd
EI

Eqn. (5) represent a second order Homogeneous Differential

Equation for simple harmonic motion and general solution

of the equation is given as Eqn. (6)

)5(0)4(

)4(

2

2

2

2





yk
dx

yd

EI

P
kLet

)6(cossin kxDkxCy 



Coefficient C & D can be determined by applying the
boundary condition.

In Eqn. (6) either C = 0 or sinkL=0. if C = 0 it will be zero
everywhere along the column and we will have a trivial
solution (member will be straight for any loading) the only

At End A: x = 0 & y = 0 At End B: x = L & y = 0
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To satisfy the Eqn. (8)

n = 1, 2, 3, ….
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n values of 1, 2, 3, represent the buckling

shape (eigenvalue) corresponding to 1st,

2nd and 3rd buckling mode shape,

respectively.

The smallest (critical) value load, Pcr

occurs when n = 1, which corresponding

to first (least) buckling mode.
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The Eqn. (11) is called the Euler formula and deflection
corresponding to this load is
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Substituting the value of Pcr from Eqn. (11)
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Eqn. (13) represents the equation of elastic curve after the
column has been buckled. From the equation (13) deflection
will be maximum when
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L
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Above solution is indeterminate this is due to the fact that

differential Eqn. (2) used is the linearized approximation of

actual differential equation.

If P<Pcr the condition sin( 𝜋𝑥/𝐿) = 0 cannot be satisfied then

we must have C = 0 as only in this case configuration of

column will be straight, which is stable condition.



INFLUENCE OF END CONDITION

Effective Length (Le)

It is the length of the column corresponding to the half sine

wave or length between the point of contra-flexure.

The Euler critical load for fundamental buckling mode

depends upon the effective length.

Effective Length Factor (K)

It is the ratio between the effective length and original length

The Factor K depends upon the end/boundary Condition of

the column
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Effect of K-factor on Critical Buckling Load



Critical Stress (σcr )

It is the stress corresponding to the Euler Critical Load and can

be calculated as following.

Critical Stress (σcr ) for Slender Column

The critical stress for slender columns may be fixed by

dividing proportional or yield stress by factor of safety and

corresponding limiting slenderness ratio can be determined by

using the Eqn. (14).
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For slender columns, Length > 30(least X-sectional dimension) 

Assuming a rectangular cross-section of bxh.
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Critical Stress (σcr ) for Short Column

For Short columns critical stress is taken equal to the crushing or 

yield stress and slenderness ratio may be fixed by considering 

the, Length = 10 (least X-sectional dimension)

6.34
32/

10

min


b

b

r

Le 30
min


r

L
Let e



Example 10.01 (Bear & Johnston 6th Ed.)

A 2.0 m long pin-ended column of square cross section is to be 

made of wood. Assuming E =13 GPa, σall = 12 MPa, and using 

a factor of safety of 2.5 in computing Euler’s critical load for 

buckling, determine the size of the cross section if the column 

is to safely support.

a) A 100 kN load

b) A 200 kN load

Data

σall = 12 MPa , E = 13 GPa

F.O.S. = 2.5

L = 2.0 m

Size of square column, b = ?
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σcr FOR INTERMEDIATE COLUMNS

Tangent Modulus Theorem (Inelastic Buckling)

By this method a modified version of Euler equation is adopted

to determine the stress-slenderness relationship in which the

value of the modulus of elasticity is given at any given level.

Consider a column manufactured from the a material, whose

stress-strain curve is shown in the figure below.

The slope of the tangent to the

stress-strain curve at any stress

value σ (σ is greater than σPl and is

within the inelastic range) is equal

to the value of Tangent Modulus of

Elasticity, Et.

Et is different from the E which is

the value at Elastic limit.



The value of Et can be used is Euler equation to calculate

the modified slenderness corresponding to any successive

value of σ.

The curve for to intermediate column can be plotted by

obtaining the slenderness value corresponding the any

successive stress value (σ = σcr) ranging between than σPl

and σult or crushing value .
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Although, the nonlinearity of the stress-strain diagram

beyond the proportional limit is considered in Eqn. (15), its

theoretical basis is somewhat weak. Therefore, this equation

should be viewed as an empirical formula. However, the

results obtained from Equation are in satisfactory agreement

with experimental results.
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Rankin-Gordon Formula
Euler formula is only suitable for the slender columns with
small imperfections. In practice, most of the intermediate
columns fail due to the combined effect of compression and
flexure and experimentally obtained results are much less than
the Euler prediction.

Gordon suggested an empirical formula based on the
experimental results to predict the load of intermediate
columns, which was further modified by Rankin.

According to Rankin intermediate columns/members fail due
to buckling and compression to more or less degree and load
carrying capacity of such member can be calculated as
following.
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In Eqn. (16)

PR = Rankin – Gordon buckling load

Pe = Euler buckling Load

Pc = Ultimate compressive load AorAP

L

EI
P

columnenddedpinFor

ycc

e

e








2

2

2

222

2

22 .1

.

)(

.
1

.

.
1

.
)16(





















r

L

E

A

ArE

AL

A

LEI

A

A
P

ey

y

ey

y

e

y

y

R



















E
a

r

L
a

A
P

y

e

y

R

2

2
)17(

1

.





















a = Rankin constant, which 

depends upon the boundary 

condition and material  properties 



Material σy (MPa) Rankin constant, a

Mild Steel 325 1 / 7500

Wrought Iron 250 1 / 9000

Cast Iron 560 1 / 1600

Timber 35 1 / 3000

Rankin constant for various Materials

Graphical Presentation of Rankin Formula



Example Problem

A cast Iron column of 200 mm external diameter is 20 mm 

thick and 4.5 m long. Assuming the both  end rigidly fixed, 

calculate the safe load using Rankin Formula if Rankin 

constant, a = 1 / 1600, σy = 550 MPa F.O.S. = 4.0.

Data

σy = 550 MPa , F.O.S. = 4.0

Do = 200.0 mm K = 0.5 ( both Ends fixed)

t = 20 mm a = 1 / 1600

Psafe = PR / FOS
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AISC SPECIFICATIONS FOR STEEL COLUMNS

American Institute of Steel Construction (AISC) specifies two

method for the computation of the compressive strength of the

columns. Both design specification bound the maximum

slenderness ratio equal to 200.

1. Allowable stress design (ASD)

2. Load and Resistance Factor Design (LRFD)

1.0 Allowable stress design (ASD)

It is the old method and according to this method columns

made of structural steel can be designed on the basis of

formulas proposed by the Structural Stability Research

Council (SSRC). Factors of safety are applied to these

formulas.



It consider only intermediate (short) and long column and

there is no straight portion between the stress~slenderness

ratio curve. A specific slenderness ratio value Rc is used to

differentiate between the slender and intermediate (or short)

column.

Experimental studies showed that compressive residual

stresses can exist in rolled-formed steel sections their

magnitude may be as much as one-half the yield stress.

Consequently, if the stress in the Euler formula is greater σy

/2 then equation is not valid. Thus, limiting slenderness

ratio Rc for the long columns can be determined by putting

the σcr = σy /2 in Euler Equation.
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The short column are designed on the base of an empirical

formula which is parabolic in form and maximum stress by

this formula is given as following.
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In long column allowable stress can be calculated through

the Euler equation divided by the Factor of safety.
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FOS becomes 5/3 or 1.67 when

Le /r = 0 and increases to 1.92 or

23/12 at slenderness value equal

to Rc.

All the above equation may be

used both in SI and FPS

System.
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ECCENTRICALLY LOADED COLUMN 

(SECANT FORMULA)

37

In practice it is difficult to apply the end thrust (axial load)

along the longitudinal centroidal axes of columns. In such case

we have to consider the effect of eccentrically applied load “P”

on a prismatic column of flexural stiffness EI.
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Suppose axial load is acting at an

eccentricity “e” from the weaker

axes (y-axis) the equation of elastic

curve and moment at any arbitrary

point Q can be given in Eqn. (23).
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The complete solution of Eqn. (25) is given as following
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General solution Particular solution



Coefficient C & D can be determined by applying the
boundary condition.

At End A: x = 0 & y = 0

At End B: x = L & y = 0
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The Eqn. (27) represents the equation of deflection (y) at any

point (x) along the columns. The value of maximum deflection

(ymax) can be calculated by setting x = L /2.
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becomes infinite when P = Pcr.
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In actual cases deflection does not become infinite even the

load exceed the elastic limits also P should not be reached to

the Pcr (Euler critical load)
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Replacing the value of EI in

Eqn. (29)
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Note: In above equation secant angle is in radians

Source of eccentricity in 

column



MAXIMUM STRESS IN ECCENTRIC COLUMN

42

The maximum stress σmax occurs in the section

of the column where the bending moment is

maximum, i.e., in the transverse section

through the midpoint C, and can be obtained

by adding the normal stresses due to the axial

force and the bending couple exerted on that

section
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Replacing the value of kL /2 as following
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e = eccentricity of loading

c = distance from the N.A.

to extreme fibres

r = radius of gyration

A = cross-sectional area of

column



The Eqn. (33) can be used for any end condition as long as
the appropriate (K) value is used to calculate Pcr.

Since σmax does not vary linearly with load P, the principal
of superposition is not applicable to determine the stress due
to the simultaneously application of applied loads.

For the same reason any factor of safety should be used with
load not the stress.
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If the material properties, the dimensions of the column, and

the eccentricity e are known then we have two variables in

the secant formula: P and σmax. If P is also given, σmax can be

computed from the formula without difficulty.

 On the other hand, if σmax is specified, the determination of

P is considerably more complicated because Eqn. (33),

being nonlinear in P, must be solved by trial-and-error.

 The secant formula is chiefly useful for intermediate

values of Le /r. However, to use it effectively, we should

know the value of the eccentricity e of the loading

The formula given in Eqn. (33) is referred to as the secant

formula; it defines the force per unit area (P/A), that causes a

specified maximum stress (σmax) in a column of given

effective slenderness ratio (Le /r), for a given value of the

eccentricity ratio (ec/r2).







Due to imperfections in manufacturing or specific
application of the load, a column will never suddenly
buckle; instead, it begins to bend.

The load applied to a column is related to its deflection
in a nonlinear manner, and so the principle of
superposition does not apply.

 As the slenderness ratio increases, eccentrically loaded
columns tend to fail at or near the Euler buckling load.



Exercise: Plot the load-displacement curves of a rectangular column

for the given data with eccentricity ranging from 5-25 mm.

Data

L= 2.5 m K = 1.0, A = 30x60 mm2,    e = 5 – 25 mm

Solution Imin= 60x303/12= 135,000 mm4 ,  rmin = 8.66 mm

P (kN) Sec(kL/2) y (mm)

0 e= 5 e= 10 e= 15 e= 20 e= 25

10

20

30

40

42.64


















 1

2
sec1

2
secmax

crP

P
e

kL
ey


kNPcr 64.42

)25001(

1013510200
2

332









Problem 13.53

(Mech. of Materials by RC Hibbler, 8th Ed)

The W200x22, A-36-steel column is fixed at

its base. Its top is constrained to rotate about

the y–y axis and free to move along the y–y

axis. Also, the column is braced along the x–x

axis at its mid-height. Determine the

allowable eccentric force P that can be

applied without causing the column either to

buckle or yield. Use against buckling F.O.S. =

2.0 and F.O.S. = 1.5 against yielding.

For W250x58 Section

A= 28600 mm2 Ix = 20x106 mm4, rx = 83.6 mm 

e = 100 mm , Iy = 1.42x106 mm4, ry = 22.3 mm 

d = 200 mm, bf =102 mm , E = 200 GPa
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Problem 13.61

(Mech. of Materials by RC Hibbler, 8th Ed)

The W250x45, A-36-steel column is

pinned at its top and fixed at its base.

Also, the column is braced along its

weak axis at mid-height. If P= 250 kN,

investigate whether the column is

adequate to support this loading. Use

buckling F.O.S. = 2.0 against buckling

and against F.O.S. = 1.5 yielding.

For W250x45 Section

A= 5700 mm2 rx = 112 mm 

Iy = 7.03x106 mm4,

d = 266 mm, bf =mm , E = 200 GPa
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INITIALLY CURVED COLUMN 

(PERRY - ROBERTSON FORMULA)

57

In practice a column cannot be made perfectly straight and

Pcr is never reached. Consideration of small deviation from

the straight configuration makes the analysis more realistic.

According to Perry-Robertson Formula, all practical

imperfections (e.g. properties of the real columns) could be

represented by a hypothetical initial curvature (a0) of

column.

Let consider a columns AB of length L has an initial

imperfection y0 prior to the application of load and y is the

additional deformation due to the applied load P. the equation

of the elastic curve for any arbitrary point Q can be represented

as following.
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y0 = initial deviation of the column and
is represented by the sinusoidal curve



The complete solution of Eqn. (38) is given as following
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Applying the boundary condition

At End A: x = 0 & y = 0 At End B: x = L & y = 0
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)40(sin0 kLCIn Eqn. (40) either C or sinkL is zero

Assuming k any non-zero value (as deflection will always be

due to some applied load P) we must have C = 0



Substituting the values of C and D in Eqn. (39)
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For pin ended column the deflection is maximum (ym) at
center when x = L/2
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In Eqn. (41) & (42) y and ym are the additional deflection due
to the applied P as compared to the initial deflection a0.
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Using Eqn. (42)

Load-deflection Curve of initially 
curved column

The relationship of P and ym as shown in the figure depicts

that the initially deformed columns fails before reaching the

Pcr (Euler critical load) and ym increases rapidly with the

increase of load P.

At any definite displacement before the failure the Eqn. (42)

be written as following.
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The values of ym /P and ym are plotted from a column test
then these variables can be related by a straight line.

While plotting initial values may be discarded (40% to 80%
data may be plotted).

This plot is called the South-well plot and it is used to
determine the initial deflection of a column, experimentally.

)43(
1 0


































cr

m

cr

m

P

a
y

PP

y

cmxy

South-Well Plot

Relating with the equation of 
straight Line



Total deflection at any distance x is given as
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Displacement will be maximum at x = L /2
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MAXIMUM STRESS IN DEFLECTED COLUMN

64

The maximum stress σmax occurs in the section of the column

where the bending moment or displacement is maximum.
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If applied load P is given the

maximum stress can be

determined by using the Eqn. (47)



If σmax are specified then to determine the safe applied load

the Eqn. (47) is to transformed in term of applied stress σ.
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We need not to consider positive square root since we are only

interested in smaller values of square roots in the Eqn. (48).

This equation represents the average value of stress in the cross-

section at which the maximum stress would be attained at mid-

height of the column for any given value of η.



To determine the average applied stress (σ) at which yield

occurs then σmax is replaces by the σy.
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Experimental evidence obtained by Perry and Robertson
indicated that for a mild steel the hypothetical initial curvature
of the column could be represented as following.
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It is that value of slenderness ratio when the yield stress is

first attained in one of the extreme fibres.
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