

Chapter 3
 Combining Factors and Spreadsheet Functions

Lecture slides to accompany
Engineering Economy
$7^{\text {th }}$ edition

Leland Blank
Anthony Tarquin

LEARNING OUTCOMES

1. Shifted uniform series
 2. Shifted series and single cash flows
 3. Shifted gradients

Shifted Uniform Series

A shifted uniform series starts at a time other than period 1

The cash flow diagram below is an example of a shifted series Series starts in period 2, not period 1

> Shifted series usually require the use of

multiple factors

Remember: When using P/A or A/P factor, P_{A} is always one year ahead of first A

When using F/A or A / F factor, F_{A} is in same year as last A

Example Using PIA Factor: Shifted Uniform Series

The present worth of the cash flow shown below at $i=10 \%$ is:
(a) $\$ 25,304$
(b) $\$ 29,562$
(c) $\$ 34,462$
(d) $\$ 37,908$

Solution: (1) Use P/A factor with $n=5$ (for 5 arrows) to get P_{1} in year 1
(2) Use P / F factor with $n=1$ to move P_{1} back for P_{0} in year 0

$$
P_{0}=P_{1}(P / F, 10 \%, 1)=A(P / A, 10 \%, 5)(P / F, 10 \%, 1)=10,000(3.7908)(0.9091)=\$ 34,462
$$

Example Using FIA Factor: Shifted Uniform Series

How much money would be available in year 10 if $\$ 8000$ is deposited each year in years 3 through 10 at an interest rate of 10% per year?

Cash flow diagram is:

Solution: Re-number diagram to determine $\mathrm{h}=8$ (number of arrows)

$$
\begin{aligned}
\mathrm{F}_{\mathrm{A}} & =8000(\mathrm{~F} / \mathrm{A}, 10 \%, 8) \\
& =8000(11.4359) \\
& =\$ 91,487
\end{aligned}
$$

Shifted Series and Random Single Amounts

For cash flows that include uniform series and randomly placed single amounts:

Uniform series procedures are applied to the series amounts
Single amount formulas are applied to the one-time cash flows

The resulting values are then combined per the problem statement

The following slides illustrate the procedure

Example: Series and Random Single Amounts

Find the present worth in year 0 for the cash flows shown using an interest rate of 10% per year.

First, re-number cash flow diagram to get n for uniform series: $\mathrm{n}=8$

Example: Series and Random Single Amounts

Use P/A to get P_{A} in year 2: $P_{A}=5000(P / A, 10 \%, 8)=5000(5.3349)=\$ 26,675$
Move P_{A} back to year 0 using P/F: $P_{0}=26,675(P / F, 10 \%, 2)=26,675(0.8264)=\$ 22,044$
Move $\$ 2000$ single amount back to year $0: \mathrm{P}_{2000}=2000(\mathrm{P} / \mathrm{F}, 10 \%, 8)=2000(0.4665)=\$ 933$
Now, add P_{0} and P_{2000} to get $P_{T}: P_{T}=22,044+933=\$ 22,977$

Example Worked a Different Way
 (Using F/A instead of P/A for uniform series)

The same re-numbered diagram from the previous slide is used

Solution: Use F / A to get F_{A} in actual year 10: $F_{A}=5000(F / A, 10 \%, 8)=5000(11.4359)=\$ 57,180$ Move F_{A} back to year 0 using P/F: $P_{0}=57,180(P / F, 10 \%, 10)=57,180(0.3855)=\$ 22,043$ Move $\$ 2000$ single amount back to year $0: P_{2000}=2000(P / F, 10 \%, 8)=2000(0.4665)=\$ 933$ Now, add two P values to get $P_{T}: P_{T}=22,043+933=\$ 22,976 \quad$ Same as before

As shown, there are usually multiple ways to work equivalency problems

Example: Series and Random Amounts

Convert the cash flows shown below (black arrows) into an equivalent annual worth A in years 1 through 8 (red arrows) at $\mathrm{i}=10 \%$ per year.
$\mathrm{A}=$?

Approaches:

1. Convert all cash flows into P in year 0 and use A / P with $n=8$
2. Find F in year 8 and use A / F with $n=8$

Solution:
Solve for $F: \quad F=3000(F / A, 10 \%, 5)+1000(F / P, 10 \%, 1)$
$=3000(6.1051)+1000(1.1000)$
= \$19,415
Find $A: \quad A=19,415(A / F, 10 \%, 8)$
$=19,415(0.08744)$
= \$1698

Shifted Arithmetic Gradients

Shifted gradient begins at a time other than between periods 1 and 2

Present worth P_{G} is located x periods before gradient starts

Must use multiple factors to find P_{T} in actual year 0

To find equivalent A series, find P_{T} at actual time 0 and apply (A/P;, n)

Example: Shifted Arithmetic Gradient

John Deere expects the cost of a tractor part to increase by $\$ 5$ per year beginning 4 years from now. If the cost in years $1-3$ is $\$ 60$, determine the present worth in year 0 of the cost through year 10 at an interest rate of 12% per year.

Solution: First find P_{2} for $\mathrm{G}=\$ 5$ and base amount $(\$ 60)$ in actual year 2

$$
P_{2}=60(P / A, 12 \%, 8)+5(P / G, 12 \%, 8)=\$ 370.41
$$

Next, move P_{2} back to year 0

$$
P_{0}=P_{2}(P / F, 12 \%, 2)=\$ 295.29
$$

Next, find P_{A} for the $\$ 60$ amounts of years 1 and 2

$$
P_{A}=60(P / A, 12 \%, 2)=\$ 101.41
$$

Finally, add P_{0} and P_{A} to get P_{T} in year 0

$$
P_{T}=P_{0}+P_{A}=\$ 396.70
$$

Shifted Geometric Gradients

Shifted gradient begins at a time other than between periods 1 and 2

Equation yields P_{g} for all cash flows (base amount A_{1} is included)

Equation ($\mathrm{i} \neq \mathrm{g}$):
 $$
P_{g}=A_{1}\left\{1-[(1+g) /(1+i)]^{n}((i-g)\}\right.
$$

For negative gradient, change signs on both g values
There are no tables for geometric gradient factors

Example: Shifted Geometric Gradient

Weirton Steel signed a 5-year contract to purchase water treatment chemicals from a local distributor for $\$ 7000$ per year. When the contract ends, the cost of the chemicals is expected to increase by 12% per year for the next 8 years. If an initial investment in storage tanks is $\$ 35,000$, determine the equivalent present worth in year 0 of all of the cash flows at $\mathrm{i}=15 \%$ per year.

Example: Shifted Geometric Gradient

Gradient starts between actual years 5 and 6 ; these are gradient years 1 and 2 .
P_{g} is located in gradient year 0 , which is actual year 4
$P_{g}=7000\left\{1-[(1+0.12) /(1+0.15)]^{9} /(0.15-0.12)\right\}=\$ 49,401$
Move P_{g} and other cash flows to year 0 to calculate P_{T} $P_{T}=35,000+7000(P / A, 15 \%, 4)+49,401(P / F, 15 \%, 4)=\$ 83,232$

Negative Shifted Gradients

For negative arithmetic gradients, change sign on G term from + to -

General equation for determining $P: P=$ present worth of base amount ${ }_{\AA} P_{G}$
Changed from + to -
For negative geometric gradients, change signs on both g values
Changed from + to -

$$
P_{g}=A_{1}\left\{1-[(\mathcal{1}-\mathrm{g}) /(1+\mathrm{i})]^{\mathrm{n}} /(\mathrm{i}+\mathrm{g})\right\}
$$

Changed from - to +

All other procedures are the same as for positive gradients

Example: Negative Shifted Arithmetic Gradient

For the cash flows shown, find the future worth in year 7 at $\mathrm{i}=10 \%$ per year

Solution: Gradient G first occurs between actual years 2 and 3 ; these are gradient years 1 and 2
P_{G} is located in gradient year 0 (actual year 1); base amount of $\$ 700$ is in gradient years 1-6

$$
\begin{aligned}
P_{G} & =700(P / A, 10 \%, 6)-50(P / G, 10 \%, 6)=700(4.3553)-50(9.6842)=\$ 2565 \\
F & =P_{G}(F / P, 10 \%, 6)=2565(1.7716)=\$ 4544
\end{aligned}
$$

Summary of Important Points

P for shifted uniform series is one period ahead of first A; n is equal to number of A values
F for shifted uniform series is in same period as last A; n is equal to number of A values

For gradients, first change equal to G or g occurs between grädient years 1 añd 2

For negative arithmetic gradients, change sign on G from + to -

For negative geometric gradients, change sign on g from + to -

