

Chapter 2

Factors: HowTime and Interest Affect Money

Lecture slides to accompany
Engineering Economy $7^{\text {th }}$ edition

Leland Blank
Anthony Tarquin

LEARNING OUTCOMES

\author{

1. F/ P and P/ F Factors
 2. P/ A and A/P Factors
 3. F/ A and A/F Factors
 4. Factor Values
 5. Arithmetic Gradient
 6. Geometric Gradient
 7. Find i or n
}

Single Payment Factors (F/P and P/F)

Single payment factors involve only P and F.
Cash flow diagrams are as follows:

Formulas are as follows:

$$
F=P(1+i)^{n}
$$

$$
P=F\left[1 /(1+i)^{n}\right]
$$

Terms in parentheses or brackets are called factors. Values are in tables for \boldsymbol{i} and n values
Factors are represented in standard factor notation such as (F/P,i,n), where letter to left of slash is what is sought; letter to right represents what is given

Single Payment Factors (F/P and P/F)

$$
\begin{aligned}
F_{1} & =P+P i \\
& =P(1+i) \\
F_{2}= & \\
= & F_{1}+F_{1} i
\end{aligned} \quad \begin{aligned}
F_{2} & =P\left(1+i+i+i+i^{2}\right) \\
& =P\left(1+2 i+i^{2}\right) \\
& =P(1+i+)^{2}
\end{aligned}
$$

The factor $(1+i)^{n}$ is called the single-payment compound amount factor (SPCAF),

Single Payment Factors (F/P and P/F)

Reverse the situation to determine the P value for a stated amount F

$$
P=F\left[\frac{1}{(1+i)^{n}}\right]=F(1+i)^{-n}
$$

The expression $(1+i)^{-n}$ is known as the single-payment present worth factor (SPPWF)

TABLE 2-1 F/P and P/F Factors: Notation and Equations

	Factor		Standard Notation Equation	Equation with Factor Formula	Excel Function	
Notation	Name	Find/Given	F / P	$F=P(F / P, i, n)$	$F=P(1+i)^{n}$	$=F V(\% \%, n, P)$
$(F / P, i, n)$	Single-payment compound amount	P / F	$P=F(P / F, i, n)$	$P=F(1+i)^{-n}$	$=P V(\% \%, n, F)$	
$(P / F, i, n)$	Single-payment present worth					

Example: Finding Future Value

A person deposits $\$ 5000$ into an account which pays interest at a rate of 8% per year. The amount in the account after 10 years is closest to:
(A) \$2,792
(B) $\$ 9,000$
(C) $\$ 10,795$
(D) $\$ 12,165$

The cash flow diagram is:

Solution:

$$
\begin{aligned}
F & =P(F / P, i, n) \\
& =5000(F / P, 8 \%, 10) \\
& =5000(2.1589) \\
& =\$ 10,794.50
\end{aligned}
$$

Answer is (C)

Example: Finding Present Value

A small company wants to make a single deposit now so it will have enough money to purchase a backhoe costing $\$ 50,000$ five years from now. If the account will earn interest of $\mathbf{1 0 \%}$ per year, the amount that must be deposited now is nearest to:
(A) $\$ 10,000$
(B) $\$ 31,050$
(C) $\$ 33,250$
(D) $\$ 319,160$

The cash flow diagram is:

Solution:

$$
\begin{aligned}
& P=F(P / F, i, n) \\
& =50,000(P / F, 10 \%, 5) \\
& =50,000(0.6209) \\
& =\$ 31,045 \\
& \\
& \text { Answer is (B) }
\end{aligned}
$$

Uniform Series Involving P / A and A / P

The uniform series factors that involve P and A are derived as follows:
(1) Cash flow occurs in consecutive interest periods
(2) Cash flow amount is same in each interest period

The cash flow diagrams are:

$P=A(P / A, i, n) \longleftrightarrow$ standard Factor Notation $\Longleftrightarrow A=P(A P, i, n)$
Note: P is one period Ahead of first A value

Uniform Series Involving P / A and A / P

(a)

$$
\begin{aligned}
& P=A\left[\frac{1}{(1+i)^{1}}\right]+A\left[\frac{1}{(1+i)^{2}}\right]+A\left[\frac{1}{(1+i)^{3}}\right]+\cdots+A\left[\frac{1}{(1+i)^{n-1}}\right]+A\left[\frac{1}{(1+i)^{n}}\right] \\
& P=A\left[\frac{1}{(1+i)^{1}}+\frac{1}{(1+i)^{2}}+\frac{1}{(1+i)^{3}}+\cdots+\frac{1}{(1+i)^{n-1}}+\frac{1}{(1+i)^{n}}\right]
\end{aligned}
$$

Term inside the brackets is a geometric progression. Multiply the equation by $\mathbf{1 / (1 + i)}$ to yield a second equation

$$
\begin{aligned}
& \frac{P}{1+i}=A\left[\frac{1}{(1+i)^{2}}+\frac{1}{(1+i)^{3}}+\frac{1}{(1+i)^{4}}+\ldots+\frac{1}{(1+i)^{n}}+\frac{1}{(1+i)^{n+1}}\right] \\
& \begin{aligned}
\frac{1}{1+i} P & =A\left[\frac{1}{(1+i)^{2}}+\frac{1}{(1+i)^{3}}+\cdots+\frac{1}{(1+A)^{n}}+\frac{1}{(1+i)^{n+1}}\right] \\
P & =A\left[\frac{1}{(1+i)^{1}}+\frac{1}{(1+i)^{2}}+\cdots+\frac{1}{(1+i)^{n-1}}+\frac{1}{(1+i)^{n}}\right] \\
\frac{-i}{1+i} P & =A\left[\frac{1}{(1+i)^{n+1}}-\frac{1}{(1+i)^{1}}\right]
\end{aligned} \\
& P=\frac{A}{-i}\left[\frac{1}{(1+i)^{n}}-1\right] \\
& P=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right] \quad i \neq 0
\end{aligned}
$$

Uniform Series Involving P / A and A / P

(b)

TABLE 2-2 $\quad P / A$ and A / P Factors: Notation and Equations

$\left.\begin{array}{lllllll} & \text { Factor } & & \begin{array}{l}\text { Factor } \\ \text { Notation }\end{array} & \text { Name } & \text { Find/Given } & \text { Sormulard }\end{array}\right)$

Example: Uniform Series Involving P/A

A chemical engineer believes that by modifying the structure of a certain water treatment polymer, his company would earn an extra $\$ 5000$ per year. At an interest rate of 10% per year, how much could the company afford to spend now to just break even over a 5 year project period?
(A) $\$ 11,170$
(B) 13,640
(C) $\$ 15,300$
(D) $\$ 18,950$

The cash flow diagram is as follows:

Solution:

$$
\begin{aligned}
P & =5000(P / A, 10 \%, 5) \\
& =5000(3.7908) \\
& =\$ 18,954 \\
& \text { Answer is (D) }
\end{aligned}
$$

Uniform Series Involving F/A and A/F

The uniform series factors that involve F and A are derived as follows:
(1) Cash flow occurs in consecutive interest periods
(2) Last cash flow occurs in same period as F

Cash flow diagrams are:

Note: F takes place in the same period as last A

Uniform Series Involving F/A and A / F

- Take advantage of what we already have
- Recall:
- Also:

Substitute "P" and simplify!

- By substitution we see:

$$
A=F\left[\frac{1}{(1+i)^{n}}\right]\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right]
$$

- Simplifying we have:
- Which is the (A/F,i\%,n) factor

$$
A=F\left[\frac{i}{(1+i)^{n}-1}\right]
$$

Uniform Series Involving F/A and A / F

- Given:

$$
A=F\left[\frac{i}{(1+i)^{n}-1}\right]
$$

- Solve for F in terms of A

Uniform Series Involving F/A and A/F

	Factor		Factor	Standard Notation	Excel
Notation	Name	Find/Given	Formula	Equation	Functions
(F/A,i,n)	Uniform series compound amount	F/A	$\frac{(1+i)^{n}-1}{i}$	$F=A(F / A, i, n)$	$=\mathrm{FV}(\% \%, n, A)$
(A/Fi,n)	Sinking fund	A/F	$\frac{i}{(1+i)^{n}-1}$	$A=F(A / F, i, n)$	$=\operatorname{PMT}(\% \%, n, F)$

Example: Uniform Series Involving F/A

An industrial engineer made a modification to a chip manufacturing process that will save her company $\mathbf{\$ 1 0 , 0 0 0}$ per year. At an interest rate of 8% per year, how much will the savings amount to in 7 years?
(A) \$45,300
(B) $\$ 68,500$
(C) $\$ 89,228$
(D) $\$ 151,500$

The cash flow diagram is:

$F=? \quad$ Solution:

$$
\begin{aligned}
\mathrm{F} & =10,000(\mathrm{~F} / \mathrm{A}, 8 \%, 7) \\
& =10,000(8.9228) \\
& =\$ 89,228
\end{aligned}
$$

Answer is (C)

Factor Values for Untabulated i or n

3 ways to find factor values for untabulated i or n values

做 Use formula
Use spreadsheet function with corresponding P, F, or A value set to 1
深 Linearly interpolate in interest tables

Formula or spreadsheet function is fast and accurate Interpolation is only approximate

Factor Values for Untabulated i or n

Example: Untabulated i

Determine the value for (F/P, 8.3\%,10)

```
    Formula: \(F=(1+0.083)^{10}=2.2197 \Leftarrow O K\)
Spreadsheet: \(=\mathrm{FV}(8.3 \%, 10,1)=2.2197 \Leftarrow \mathrm{OK}\)
Interpolation: 8\% ------ 2.1589
    8.3\% ------ x
    9\% ------ 2.3674
\(x=2.1589+[(8.3-8.0) /(9.0-8.0)][2.3674-2.1589]\)
    \(=2.2215 \Leftarrow\) (Too high)
```

Absolute Error $=2.2215-2.2197=0.0018$

Arithmetic Gradients

Arithmetic gradients change by the same amount each period

The cash flow diagram for the P_{G} of an arithmetic gradient is:

Standard factor notation ins

$$
P_{G}=\mathbf{G}(P / G, i, n)
$$

G starts between periods 1 and 2 (not between 0 and 1)

This is because cash flow in year 1 is usually not equal to G and is handled
separately as a base amount

Note that P_{G} is located Two Periods
Ahead of the first change that is equal to G

Arithmetic Gradients

Multiply both sides by (1+i)

$$
P(1+i)^{1}=G\left[\frac{1}{(1+i)^{1}}+\frac{2}{(1+i)^{2}}+\ldots+\frac{n-2}{(1+i)^{n-2}}+\frac{n-1}{(1+i)^{n-1}}\right]
$$

Subtracting [1] from [2].

$$
P_{G}=\frac{G}{i}\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}-\frac{n}{(1+i)^{n}}\right]
$$

Typical Arithmetic Gradient Cash Flow

Converting Arithmetic Gradient to A

Arithmetic gradient can be converted into equivalent A value using G(AGG,i,n)

Example: Arithmetic Gradient

The present worth of $\$ 400$ in year 1 and amounts increasing by $\$ 30$ per year through year 5 at an interest rate of $\mathbf{1 2 \%}$ per year is closest to:
(A) $\$ 1532$
(B) \$1,634
(C) $\$ 1,744$
(D) $\$ 1,829$

Solution:

$$
\begin{aligned}
\mathbf{P}_{\mathrm{T}} & =400(\mathrm{P} / \mathrm{A}, 12 \%, 5)+30(\mathrm{P} / \mathrm{G}, 12 \%, 5) \\
& =400(3.6048)+30(6.3970) \\
& =\$ 1,633.83
\end{aligned}
$$

Answer is (B)
The cash flow could also be converted into an A value as follows:

$$
\begin{aligned}
A & =400+30(A, G, 12 \%, 5) \\
& =400+30(1.7746) \\
& =\$ 453.24
\end{aligned}
$$

Geometric Gradients

A geometric gradient series is a cash flow series that either increases or decreases by a constant percentage each period. The uniform change is called the rate of change.
$g=$ constant rate of change, in decimal form, by which cash flow values increase or decrease from one period to the next. The gradient g can be + or - .
$A_{1}=$ initial cash flow in year 1 of the geometric series
$P_{g}=$ present worth of the entire geometric gradient series, including the initial amount A_{1}

Geometric Gradients

$$
\begin{aligned}
& P_{g} \frac{(1+\mathrm{g})}{(1+\mathrm{i})}=A_{1} \frac{(1+\mathrm{g})}{(1+\mathrm{i})}\left[\frac{1}{(1+i)}+\frac{(1+g)^{1}}{(1+i)^{2}}+\frac{(1+g)^{2}}{(1+i)^{3}}+\ldots+\frac{(1+g)^{n-1}}{(1+i)^{n}}\right] \\
& P_{g}\left(\frac{1+\mathrm{g}}{1+\mathrm{i}}-1\right)=A_{1}\left[\frac{(1+g)^{n}}{(1+i)^{n+1}}-\frac{1}{1+i}\right] \quad P_{g}=A_{1}\left[\frac{1-\left(\frac{1+g}{1+i}\right)^{n}}{i-g}\right] g \neq \mathrm{i}
\end{aligned}
$$

Geometric Gradients

For the case $\mathbf{i}=\mathbf{g}$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{g}} & =\mathrm{A}_{1}\left(\frac{1}{(1+\mathrm{i})}+\frac{1}{(1+\mathrm{i})}+\frac{1}{(1+\mathrm{i})}+\ldots+\frac{1}{(1+\mathrm{i})}\right) \\
P_{g} & =\frac{n A_{1}}{(1+i)}
\end{aligned}
$$

$P_{g}=$?

$$
\begin{aligned}
P_{g} & =A_{1}(P / A, g, i, n) \\
(P / A, g, i, n) & = \begin{cases}\frac{1-\left(\frac{1+g}{1+i}\right)^{n}}{i-g} & g \neq i \\
\frac{n}{1+i} & g=i\end{cases}
\end{aligned}
$$

The $(P / A, g, i, n)$ factor calculates P_{g} in period $t=0$ for a geometric gradient series starting in period 1 in the amount A_{1} and increasing by a constant rate of g each period.

Example: Geometric Gradient

Find the present worth of \$1,000 in year 1 and amounts increasing by 7% per year through year 10 . Use an interest rate of 12% per year.
(a) $\$ 5,670$
(b) $\$ 7,333$
(c) $\$ 12,670$
(d) $\$ 13,550$

Solution:

$$
\begin{aligned}
P_{\mathrm{g}} & =1000\left[1-(1+0.07 / 1+0.12)^{10}\right] /(0.12-0.07) \\
& =\$ 7,333
\end{aligned}
$$

Answer is (b)

To find A, multiply P_{g} by (AP,12\%,10)

Unknown Interest Rate i

Unknown interest rate problems involve solving for i, given n and 2 other values (P, F, or A)

Procedure: Set up equation with all symbols involved and solve for i
A contractor purchased equipment for \$60,000 which provided income of \$16,000 per year for 10 years. The annual rate of return of the investment was closest to:
(a) 15%
(b) 18%
(c) 20%
(d) 23%

Solution: \quad Can use either the P / A or A / P factor. Using A / P :

$$
\begin{aligned}
60,000(\mathrm{AP}, \mathrm{i} \%, 10) & =16,000 \\
(\mathrm{AP}, \mathrm{i} \%, 10) & =0.26667
\end{aligned}
$$

FromAP column at $\mathrm{n}=10$ in the interest tables, i is between 22% and 24% Answer is (d)

Unknown Recovery Period n

Unknown recovery period problems involve solving for n , given i and 2 other values (P, F, or A)
(Like interest rate problems, they usually require a trial \& error solution or interpolation in interest tables)

Procedure: Set up equation with all symbols involved and solve for n

A contractor purchased equipment for \$60,000 that provided income of \$8,000 per year. At an interest rate of 10\% per year, the length of time required to recover the investment was closest to:
(a) 10 years
(b) 12 years
(c) 15 years
(d) 18 years

Solution: Can use either the P/A or AP factor. Using AP:

$$
\begin{aligned}
60,000(A P, 10 \%, n) & =8,000 \\
(A P, 10 \%, n) & =0.13333
\end{aligned}
$$

FromAPP column in $\mathrm{i}=10 \%$ interest tables, n is between 14 and 15 years Answer is (c)

Summary of Important Points

In P/A and AP factors, P is one period ahead of first A
In F/A and AF factors, F is in same period as last A
To find untabulated factor values, best way is to use formula or spreadsheet
For arithmetic gradients, gradient G starts between periods 1 and 2
Arithmetic gradients have 2 parts, base amount (year 1) and gradient amount
$\&$ For geometric gradients, gradient g starts been periods 1 and 2
β
In geometric gradient formula, A_{1} is amount in period 1
\not To find unknown i or n , set up equation involving all terms and solve for i or n

