

Under-Reinforced Failure

remains constant. Only "T" and " C_c " $a/2$ Stage-I, Un-cracked Section N.A. position is fixed, means " $\ell_{\rm a}$ " increase with the increase of load

Stage-II, Cracked Section

When section cracks, N.A. moves towards compression face means " $\ell_{\rm a}$ " increases. "T" and "C_c" also increase.

Cc

 $\mathbf T$

 ℓ a

Under-Reinforced Failure (contd…)

Stage-III, Yielding in Steel Occur

 $T = A_s f$ $_{\rm y}$ remains constant and $\rm C_{c}$ also remains constant. " ℓ_a " increases as the N.A. moves towards compression face because cracking continues.

Failure initiates by the yielding of steel but final failure is still by crushing of concrete

Internal Force Diagram

Stage 1: Uncracked Section

Stage 2: Cracked Section

Stage 3: Ultimate Condition

Under-Reinforced Failure (contd…)

Derivation for ρ

Design Moment Capacity

$$
\phi_b M_n = \phi_b T \times \ell_a
$$

= $\phi_b A_s f_y \times \left(d - \frac{a}{2} \right)$

For tension controlled section ϕ = 0.9

$$
\phi_{b} M_{n} = 0.9 A_{s} f_{y} \times \left(d - \frac{a}{2} \right) \longrightarrow (1)
$$
\n
$$
a = \frac{A_{s} f_{y}}{0.85 f_{c} b} \longrightarrow (2)
$$

And

Under-Reinforced Failure (contd…) Put value of "a" from (1) to (2)

$$
\phi_{b} M_{n} = 0.9 A_{s} f_{y} \left(d - \frac{A_{s} f_{y}}{2 \times 0.85 f_{c}^{*} b} \right)
$$

$$
= 0.9 \times \rho b d \times f_{y} \left(d - \frac{\rho b d \times f_{y}}{2 \times 0.85 f_{c}^{*} b} \right)
$$

 $\overline{}$

For economical design

$$
\phi_b M_n = M_u
$$

\n
$$
M_u = 0.9 \times \rho b d^2 \times f_y \left(1 - \frac{\rho \times f_y}{2 \times 0.85 f_c} \right)
$$

\n
$$
\frac{M_u}{bd^2} = 0.9 \rho \times f_y \left(1 - \frac{\rho}{2} \times \frac{f_y}{0.85 f_c} \right)
$$

Under-Reinforced Failure (contd…) Let

y

 $\frac{W_u}{\text{bd}^2} = R \qquad (MPa)$ M 2 $\frac{u}{2} = R$ (MPa) And $f_{\perp} = 0$ 0.85fc' y = **Hence** $\overline{}$ \int $\left(1-\frac{\rho}{\rho}\right)$ \setminus $= 0.9 \rho \times f_y \left(1 - \frac{\rho}{2\omega}\right)$ ρ $R = 0.9 \rho \times f_y | 1$ $\overline{}$ \int $\left(1-\frac{\rho}{\rho}\right)$ \setminus $= \rho \left(1 - \frac{\rho}{2\omega} \right)$ ρ $\frac{1}{0.9f_v} = \rho \left(\frac{1}{10.9f_v} \right)$ R y 2 ωρ $\frac{1}{0.9f_{u}} = \rho -$ R 2 y = $\frac{1}{0.9f_v} = 0$ ρ^2 - 2 $\omega \times \rho$ + $\frac{2\omega \times R}{\omega \times R}$ 2 - 2 $\omega \times \rho + \frac{2\omega \times R}{\omega}$ = $\times \rho + \frac{2\omega \times}{\sigma}$ $\frac{1}{\text{fc'}} = 0$ fc' 0.85 0.85 0.9f $ρ^2$ - 2ω × ρ + $\frac{2ω \times R}{2ω}$ y $2 - 2\omega \times \rho + \frac{2\omega \times R}{\omega} \times \frac{0.65}{\omega} \times \frac{R}{\omega} =$ $\times \rho + \frac{2\omega \times}{\sigma}$ $\frac{1}{0.3825f} = 0$ $ρ^2$ - 2ω × ρ + $\frac{ω^2 \times R}{ω^2 \cdot 2ω^2 \cdot 5}$ c² - 2 $\omega \times \rho + \frac{\omega^2 \times R}{\omega}$ = $\times \rho + \frac{\omega^2 \times}{\omega^2}$ 20.3825fc' $2\omega \pm \sqrt{4\omega^2 - 4 \times \frac{R \times \omega}{\omega}}$ ρ \pm ₁/4 ω^2 – 4 $\times \frac{R \times \omega^2}{4}$ =

Under-Reinforced Failure (contd…)

By simplification

$$
\rho = \omega \left(1 \pm \sqrt{1 - \frac{R}{0.3825 f_c}} \right)
$$

We have to use -ve sign for under reinforced sections. So

$$
\rho = \omega \left(1 - \sqrt{1 - \frac{2.614R}{f_c}} \right)
$$

Reason

For under reinforced section $\rho < \hspace{-3pt}\rho_{\rm b}$

If we use positive sign ρ will become greater than $\rho_{\rm b}$, leading to brittle failure.

Plotting of R - ρ

Trial Method for the determination of " ${\rm A_s}$ "

Trial # 1, Assume some value of "a" e.g. $d/3$ or $d/4$ or any other reasonable value, and put in (C) to get " $\rm A_s$ "

Trial # 2, Put the calculated value of " A_s " in (A) to get "a". Put this "a" value in (C) to get " $\rm A_s$ "

Keep on doing the trials unless "As" from a specific trial becomes equal to the "As" calculated from previous trial.

THIS VALUE OF $\rm A_S$ WILL BE THE FINAL ANSWER.

 $0.85f_{\tiny \circ}$ 'b $a = \frac{A_s f}{\sqrt{2\pi}}$ c $=\frac{-s-y}{0.85f!b}$ (A) $\overline{}$ \int $\left(d - \frac{a}{a}\right)$ \setminus $\bigg($ $= 0.9A_sI_y(0 - \frac{1}{2})$ $M_{u} = 0.9A_{s}f_{y} \left(d - \frac{a}{2} \right)$ (B) \int $\left(d - \frac{a}{a}\right)$ \setminus $\int d -$ = 2a $0.9f$ _u \mid d $A_{\circ} = \frac{M}{\sqrt{2}}$ y u $s = \frac{a}{\sqrt{a}} \qquad (C)$

Is The Section Under-Reinforced or NOT ?

- 1.Calculate ρ and if it is less than ρ_{max} , section is under reinforced
- 2.Using "a" and "d" calculate $ε_t$ if it is ≥ 0.005, section is under-reinforced (tension controlled)
- 3. If section is over-reinforced than in the following equation –ve term will appear in the under-root.

$$
\rho = \omega \left(1 - \sqrt{1 - \frac{2.614R}{f_c}} \right)
$$

Is The Section is Under-Reinforced or NOT ? (contd…)

1.For tension controlled section, $\varepsilon_t = 0.005$, $a = \beta_1 - d$ $a = \beta_1 \frac{3}{6}$ Using formula of $\rm M_n$ from concrete side

$$
M_{u} = \phi_{b} M_{n} = \phi_{b} C_{c} \times \ell_{a}
$$

\n
$$
M_{u} = 0.9 \times 0.85 f_{c} ' ba \times \left(d - \frac{a}{2} \right)
$$

\n
$$
M_{u} = 0.9 \times 0.85 f_{c} ' b \left(0.85 \frac{3}{8} d \right) \times \left(d - \frac{0.85 \frac{3}{8} d}{2} \right)
$$

\n
$$
M_{u} = 0.205 f_{c} ' bd^{2}
$$

\n
$$
d_{min} = \sqrt{\frac{M_{u}}{0.205 f_{c} ' xb}}
$$

If we keep $d > d_{\text{min}}$ the resulting section will be underreinforced.

d > $\rm d$ $\rm _{min}$ means that section is stronger in compression.

Over-Reinforced Failure

Stage-I, Un-cracked Section

Stage-II, Cracked Section

These two stages are same as in under-reinforced section.

Stage-III, Concrete reaches strain of 0.003 but steel not yielding

We never prefer to design a beam as overreinforced (compression controlled) as it will show sudden failure.

$$
\phi = 0.65 \qquad \varepsilon_{\rm s} < \varepsilon_{\rm y} \quad {\rm f}_{\rm s} < {\rm f}_{\rm y}
$$

Internal Force Diagram

Over-Reinforced Failure

Stage-III, Concrete reaches strain of 0.003 but steel not yielding (contd…)

$$
\phi_{b} M_{n} = C_{c} \times \ell_{a}
$$

$$
\phi_{b} M_{n} = 0.65 \times 0.85 f_{c}^{\dagger} ba \times \left(d - \frac{a}{2} \right) \longrightarrow (i)
$$

"a" is unknown as " $\rm f_{s}$ " is not known

$$
a = \frac{A_s f_s}{0.85 f_c' b}
$$
 (ii)

Over-Reinforced Failure

Stage-III, Concrete reaches strain of 0.003 but steel not yielding (contd…)

Putting value of " f_s " from (iv) to (ii)

$$
a = \frac{A_s \times 600 \left(\frac{\beta_1 d - a}{a}\right)}{0.85 f_c' b}
$$
 (v)

Eq. $# (v)$ is quadratic equation in term of "a".

Flexural Capacity

$$
\phi_b M_n = \phi_b C_c \left(d - \frac{a}{2} \right) = \phi_b 0.85 f_c' ba \left(d - \frac{a}{2} \right)
$$

$$
\phi_b M_n = \phi_b T \left(d - \frac{a}{2} \right) = \phi_b A_s f_s \left(d - \frac{a}{2} \right)
$$

Calculate "a" from (v) and "fs" from (iv) to calculate flexural capacity from these equations

Concluded