

Under-Reinforced Failure

Stage-I, Un-cracked Section N.A. position is fixed, means " ℓ_a " remains constant. Only "T" and " C_c " a/2 I increase with the increase of load

Stage-II, Cracked Section

When section cracks, N.A. moves towards compression face means " ℓ_a " increases. "T" and "C_c" also increase.

Under-Reinforced Failure (contd...)

Stage-III, Yielding in Steel Occur

T = $A_s f_y$ remains constant and C_c also remains constant. " ℓ_a " increases as the N.A. moves towards compression face because cracking continues.

Failure initiates by the yielding of steel but final failure is still by crushing of concrete

Internal Force Diagram

Stage 1: Uncracked Section Stage 2: Cracked Section Stage 3: Ultimate Condition

Under-Reinforced Failure (contd...)

Derivation for ρ

Design Moment Capacity

$$\phi_{b}M_{n} = \phi_{b}T \times \ell_{a}$$
$$= \phi_{b}A_{s}f_{y} \times \left(d - \frac{a}{2}\right)$$

For tension controlled section $\phi = 0.9$

$$\phi_{\rm b}M_{\rm n} = 0.9A_{\rm s}f_{\rm y} \times \left(d - \frac{a}{2}\right)$$
 (1)
 $a = \frac{A_{\rm s}f_{\rm y}}{0.85f_{\rm c}'b}$ (2)

And

Under-Reinforced Failure (contd...) Put value of "a" from (1) to (2)

$$\phi_{b}M_{n} = 0.9A_{s}f_{y}\left(d - \frac{A_{s}f_{y}}{2 \times 0.85f_{c}'b}\right)$$
$$= 0.9 \times \rho bd \times f_{y}\left(d - \frac{\rho bd \times f_{y}}{2 \times 0.85f_{c}'b}\right)$$

For economical design

$$\phi_{b}M_{n} = M_{u}$$

$$M_{u} = 0.9 \times \rho bd^{2} \times f_{y} \left(1 - \frac{\rho \times f_{y}}{2 \times 0.85 f_{c}'}\right)$$

$$\frac{M_{u}}{bd^{2}} = 0.9\rho \times f_{y} \left(1 - \frac{\rho}{2} \times \frac{f_{y}}{0.85 f_{c}'}\right)$$

Under-Reinforced Failure (contd...) Let

Ъ

$$\frac{M_u}{bd^2} = R \quad (MPa) \quad \text{And} \quad \frac{0.85fc'}{f_y} = \omega$$
Hence
$$R = 0.9\rho \times f_y \left(1 - \frac{\rho}{2\omega}\right)$$

$$\frac{R}{0.9f_y} = \rho \left(1 - \frac{\rho}{2\omega}\right)$$

$$\frac{R}{0.9f_y} = \rho \left(1 - \frac{\rho}{2\omega}\right)$$

$$\frac{R}{0.9f_y} = \rho - \frac{\rho^2}{2\omega}$$

$$\rho^2 - 2\omega \times \rho + \frac{\omega^2 \times R}{0.3825f_c'} = 0$$

$$\rho = \frac{2\omega \pm \sqrt{4\omega^2 - 4 \times \frac{R \times \omega^2}{0.3825fc'}}}{2}$$

Under-Reinforced Failure (contd...)

By simplification

$$\rho = \omega \left(1 \pm \sqrt{1 - \frac{R}{0.3825 f_{c}'}} \right)$$

We have to use -ve sign for under reinforced sections. So

$$\rho = \omega \left(1 - \sqrt{1 - \frac{2.614R}{f_c'}} \right)$$

Reason

For under reinforced section $\rho < \rho_b$

If we use positive sign ρ will become greater than ρ_b , leading to brittle failure.

Plotting of R -p

Trial Method for the determination of "A_s"

Trial # 1, Assume some value of "a" e.g. d/3 or d/4 or any other reasonable value, and put in (C) to get " A_s "

Trial # 2, Put the calculated value of " A_s " in (A) to get "a". Put this "a" value in (C) to get " A_s "

Keep on doing the trials unless "As" from a specific trial becomes equal to the "As" calculated from previous trial.

THIS VALUE OF A_S WILL BE THE FINAL ANSWER. $a = \frac{A_{s} f_{y}}{0.85 f_{c}' b} - (A)$ $M_{u} = 0.9 A_{s} f_{y} \left(d - \frac{a}{2} \right) - (B)$ $A_{s} = \frac{M_{u}}{0.9 f_{y} \left(d - \frac{a}{2} \right)} - (C)$

Is The Section Under-Reinforced or NOT ?

- 1. Calculate ρ and if it is less than ρ_{max} , section is under reinforced
- 2. Using "a" and "d" calculate ε_t if it is ≥ 0.005 , section is under-reinforced (tension controlled)
- 3. If section is over-reinforced than in the following equation –ve term will appear in the under-root.

$$\rho = \omega \left(1 - \sqrt{1 - \frac{2.614R}{f_c'}} \right)$$

Is The Section is Under-Reinforced or NOT ? (contd...)

1. For tension controlled section, $\varepsilon_t = 0.005$, $a = \beta_1 \frac{3}{8} d$ Using formula of M_n from concrete side

$$M_{u} = \phi_{b}M_{n} = \phi_{b}C_{c} \times \ell_{a}$$

$$M_{u} = 0.9 \times 0.85f_{c}'ba \times \left(d - \frac{a}{2}\right)$$

$$M_{u} = 0.9 \times 0.85f_{c}'b\left(0.85\frac{3}{8}d\right) \times \left(d - \frac{0.85\frac{3}{8}d}{2}\right)$$

$$M_{u} = 0.205f_{c}'bd^{2}$$

$$M_{u} = \sqrt{\frac{M_{u}}{0.205f_{c}' \times b}}$$

If we keep d > d_{min} the resulting section will be underreinforced.

d > d_{min} means that section is stronger in compression.

Over-Reinforced Failure

Stage-I, Un-cracked Section

Stage-II, Cracked Section

These two stages are same as in under-reinforced section.

Stage-III, Concrete reaches strain of 0.003 but steel not yielding

We never prefer to design a beam as overreinforced (compression controlled) as it will show sudden failure.

$$\phi = 0.65$$
 $\varepsilon_s < \varepsilon_y$ $f_s < f_y$

Internal Force Diagram

Over-Reinforced Failure

Stage-III, Concrete reaches strain of 0.003 but steel not yielding (contd...)

$$\phi_{b}M_{n} = C_{c} \times \ell_{a}$$

$$\phi_{b}M_{n} = 0.65 \times 0.85f_{c}'ba \times \left(d - \frac{a}{2}\right) \quad (i)$$

"a" is unknown as " f_s " is not known

$$a = \frac{A_s f_s}{0.85 f_c' b}$$
 (ii)

Over-Reinforced Failure

Stage-III, Concrete reaches strain of 0.003 but steel not yielding (contd...)

Putting value of " f_s " from (iv) to (ii)

$$a = \frac{A_s \times 600 \left(\frac{\beta_1 d - a}{a}\right)}{0.85 f_c' b} \quad (v)$$

Eq. # (v) is quadratic equation in term of "a".

Flexural Capacity

$$\phi_b M_n = \phi_b C_c \left(d - \frac{a}{2} \right) = \phi_b 0.85 f_c' ba \left(d - \frac{a}{2} \right)$$
$$\phi_b M_n = \phi_b T \left(d - \frac{a}{2} \right) = \phi_b A_s f_s \left(d - \frac{a}{2} \right)$$

Calculate "a" from (v) and "f_s" from (iv) to calculate flexural capacity from these equations

Plain &	z Rein	force	d Conc	crete-1	
Extreme Tensile Steel Strain ε _t	Type of X-section	c/d	a/d	$ ho_{max}$	φ
< _{Ey}	Compression Controlled	$> \left(\frac{600}{600 + f_y}\right)$	$> \beta_{l} \Biggl(\frac{600}{600 + f_{y}} \Biggr)$	$> \beta_1 \frac{0.85 f_c'}{f_y} \left(\frac{600}{600 + f_y} \right)$	0.65
≥ ε _y	Transition Section (Under-Reinforced)	$\leq \left(\frac{600}{600 + f_y}\right)$	$\leq \beta_{\rm I} \Biggl(\frac{600}{600 + f_{\rm y}} \Biggr)$	$\leq \beta_1 \frac{0.85 f_c'}{f_y} \left(\frac{600}{600 + f_y} \right)$	0.65 to 0.9
≥ 0.004	Under- Reinforced (minimum strain for beams)	$\leq \frac{3}{7}$	$\leq \beta_1 \frac{3}{7}$	$\leq \beta_1 \frac{0.85 f_c'}{f_y} \times \frac{3}{7}$	0.65 to 0.9
≥ 0.005	Tension Controlled	$\leq \frac{3}{8}$	$\leq \beta_1 \frac{3}{8}$	$\leq \beta_1 \frac{0.85f_c'}{f_y} \times \frac{3}{8}$	0.9
≥ 0.0075	Redistribution is allowed	$\leq \frac{2}{7}$	$\leq \beta_1 \frac{2}{7}$	$\leq \beta_1 \frac{0.85 f_c'}{f_v} \times \frac{2}{7}$	0.9

Concluded