

Design of Singly Reinforced Beam by Strength Method (for flexure only)

Data:

- Load, Span, SFD, BMD
- f_c', f_y, E_s
- Architectural depth, if any

Required:

- Dimensions, b & h
- Area of steel
- Detailing (bar bending schedule)

Design of Singly Reinforced Beam by Strength Method (contd...)

Two Methods to Start the Procedure:

- 1. Select reasonable steel ratio between ρ_{min} and ρ_{max} . Then find b, h and A_s .
- 2. Select reasonable values of b, h and then calculate ρ and A_s .

- 1. Using Trial Dimensions
 - I. Calculate loads acting on the beam.
 - II. Calculate total factored loads and plot SFD and BMD. Determine V_{umax} and M_{umax}.
 - III. Select suitable value of beam width 'b'. Usually between L/20 to L/15. preferably a multiple of 75mm or 114 mm.
 - IV. Calculate d_{min} .

$$d_{\min} = \sqrt{\frac{M_u}{0.205 f_c'b}}$$

 $h_{min} = d_{min} + 60 \text{ mm}$ for single layer of steel $h_{min} = d_{min} + 75 \text{mm}$ for double layer of steel

Round to upper 75 mm

Design of Singly Reinforced Beam by Strength Method (contd...)

- v. Decide the final depth.
 - $h \ge h_{min} \qquad \text{For strength}$ $h \ge h_{min} \qquad \text{For deflection}$ $h \approx h_a \qquad \text{Architectural depth}$ $h \approx \frac{h}{12}$

Preferably "h" should be multiple of 75mm. Recalculate "d" for the new value of "h"

Design of Singly Reinforced Beam by Strength Method (contd...)

VI. Calculate " ρ " and " A_s ".

Four methods

a)
$$\rho = \omega \left(1 - \sqrt{1 - \frac{2.614R}{f_c'}} \right)$$

$$\omega = 0.85 \frac{f_{c}'}{f_{y}} \quad R = \frac{M_{u}}{bd^{2}}$$

- b) Design Table
- c) Design curves
- d) Using trial Method

Design of Singly Reinforced Beam by Strength Method (contd...)

VII. Check $A_s \ge A_{s \min}$.

 $A_{s\min} = \rho_{\min} bd$

$$(\rho_{\min} = 1.4/f_y \text{ to } f_c' \le 31 \text{ MPa})$$

viii. Carry out detailing

- **IX**. Prepare detailed sketches/drawings.
- **x**. Prepare bar bending schedule.

- 1. Using Steel Ratio
 - I. Step I and II are same as in previous method.
 - III. Calculate ρ_{max} and ρ_{min} & select some suitable " ρ ".
 - IV. Calculate bd² from the formula of moment

$$M_{u} = \phi_{b} M_{n} = 0.9 \left(\rho b d^{2}\right) f_{y} \left(1 - \frac{\rho f_{y}}{1.7 f_{c}'}\right)$$
$$b d^{2} = \frac{M_{u}}{0.9 \rho f_{y} \left(1 - \frac{\rho f_{y}}{1.7 f_{c}'}\right)}$$

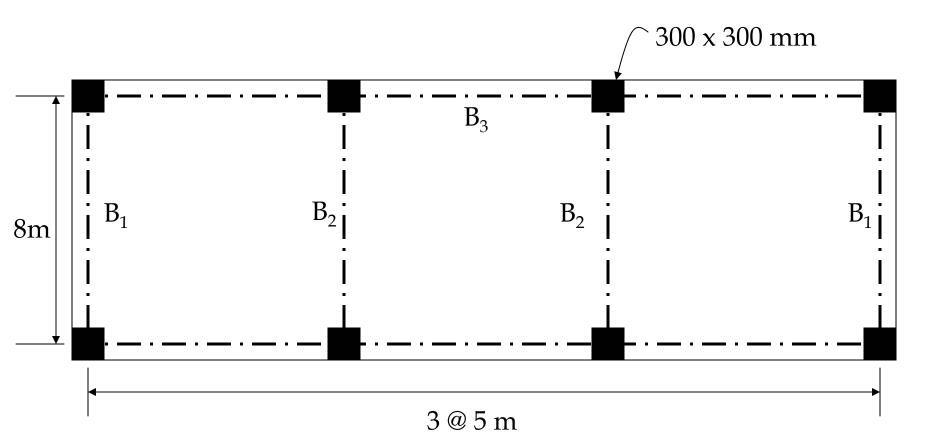
- v. Select such values of "b" and "d" that "bd²" value is satisfied.
- VI. Calculate A_s from the known steel ratio.
- VII. Remaining steps are same as of previous method.

Example:

Design the interior long beam B2 of an office building. Slab thickness = 160 mm, floor finishes = 75 mm of brick ballast and 50 mm of P.C.C. floor finishes. The beam B_2 supports a 228 mm thick wall of 3 m height. Use C-20 concrete and Grade 420 steel. US customary bars are to be used. Take b = 300 mm. Design for the following three options:

- 1. Depth obtained with maximum steel ratio, even if it violates the depth for deflection control
- 2. h = 835 mm
- 3. h = 910 mm, using trial method and prepare bar bending schedule.

Example:



Beams are not monolith.

<u>Data</u>

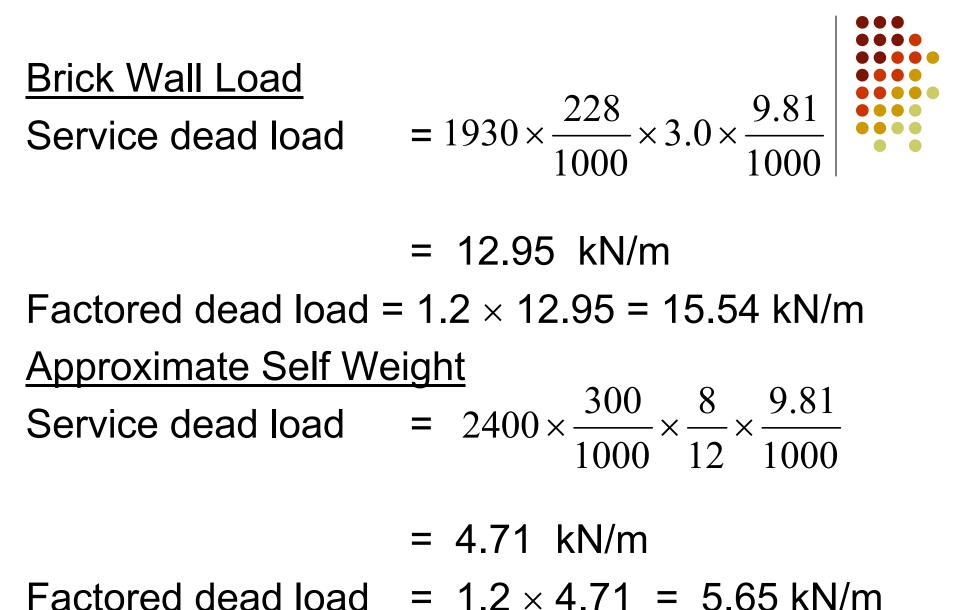
- L = 8 m
- Slab thickness = 160 mm
- Floor brick ballast = 75 mm
- Floor finish = 50 mm
- $f_c' = 20 \text{ MPa}$
- $f_y = 420 \text{ MPa}$
- b = 300 mm

<u>Slab Load</u> R.C. slab:	$\frac{160}{1000} \times 2400$	=	384	kgs/m²	
Brick ballast:	$\frac{75}{1000} \times 1800$	=	135	kgs/m²	
P.C.C. + terrazzo:	$\frac{50}{1000} \times 2300$	=	115	kgs/m²	

Total dead load:= 634 kgs/m^2 Live load:= 250 kgs/m^2

Total factored load= 1.2 D + 1.6 L

= $[1.2(634) + 1.6(250)] \times 9.81 / 1000$ = 11.39 kN/m^2



Equivalent Width Of Slab Supported By Beam B₂

$$\ell_y = 8 \text{ m} : \ell_x = 5 \text{ m} :$$

 $R = \ell_x / \ell_y = 5/8 = 0.625$

Equivalent slab width supported

$$= (1 - R^2/3) \ell_x$$

= $(1 - 0.625^2 / 3) \times 5 \times 1.1 = 4.78$ m (10% extra for first interior beam) Factored Slab Load Acting On Beam

Factored slab load on beam

- = width of slab × slab load per unit area
- $= 4.78 \times 11.39 = 54.49 \text{ kN/m}$

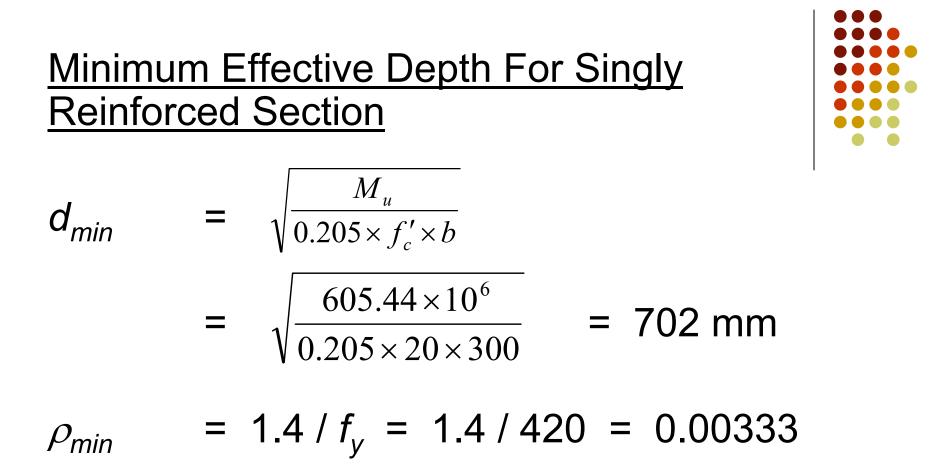
Total Factored Load

$$W_u = 54.49 + 15.54 + 5.65$$

= 75.68 kN/m

Total Factored Bending Moment

$$M_u = \frac{w_u \ell^2}{8} = \frac{75.68 \times 8^2}{8} = 605.44 \text{ kN-m}$$



<u>Depth For Deflection Control</u> Minimum depth of beam for deflection control = L / 16 = 8000 / 16 = 500 mm

The minimum depth will be obtained by using the maximum permissible steel ratio. However, this will be equal to the already calculated d_{min} .

$$\rho_{max} = 0.375 \times 0.85 \ \beta_1 \ \frac{f'_c}{f_y}$$

= 0.375 \times 0.85 \times 0.85 \times 0.85 \times \frac{20}{420}
= 0.0129

$$M_{u} = \phi_{b} \rho b d^{2} f_{y} \left(1 - \frac{1}{1.7} \frac{\rho f_{y}}{f_{c}'} \right)$$

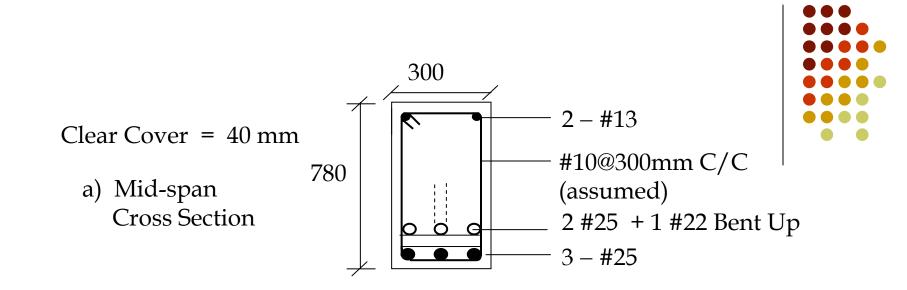
 $605.44 \times 10^{6} = 0.9 \times 0.0129 \times 300 \times d^{2} \times 420 \times \left(1 - \frac{1}{1.7} \frac{0.0129 \times 420}{20}\right)$ $d^{2} = 492,328$

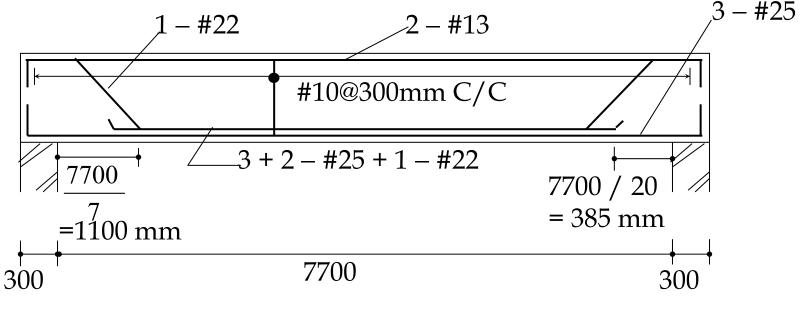
 $d = 702 \, \text{mm}$

$$A_s = \rho b d = (0.0129)(300)(702)$$

= 2717 mm²

6 No.25 provide 3060 mm² (12.6 % higher) 5 No.25 + 1 No.22 provide 2937 mm² (8.1 % higher)





b) Longitudinal Section

 When using bent-up reinforcement, the bars may be bent at a distance of ℓ_n / 7 from a simply supported end, if at least 50% of the total steel is continued beyond the bent-up point. For curtailed bars, this distance for simply supported end may be taken equal to ℓ_n / 20 (no curtailment according to the ACI Code).

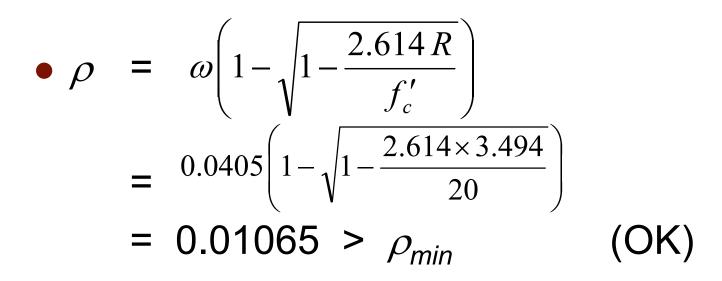
• Spacing between bars = $\frac{300 - 2 \times 40 - 2 \times 10 - 3 \times 25}{2}$

<u>Case (ii)</u>

- *h* = 835 mm
- $d \approx 835 75 = 760 \,\mathrm{mm} > d_{min}$
- *M_u* = 605.44 kN-m *Method 1*

$$= \frac{0.85 f'_c}{f_y} = \frac{0.85 \times 20}{420} = 0.0405$$

$$R = \frac{M_u}{bd^2} = \frac{605.44 \times 10^6}{300 \times 760^2} = 3.494$$



•
$$A_s = \rho b d$$

= 0.01065 × 300 × 760 = 2428 mm²
4 - #22 + 2 - #25 will be sufficient
(2568 mm²) (OK)

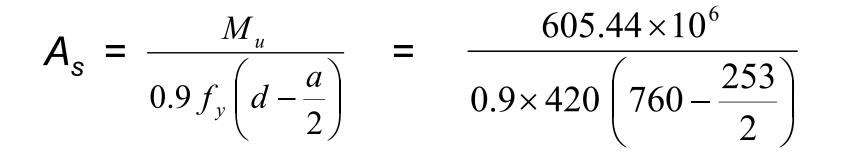
Method 2

- R = 3.494 MPa as before.
- From the table corresponding to f_c' = 20 MPa and f_y = 420 MPa,
 - $\dot{\rho}$ = 0.0108 (by approximate interpolation)
- Almost the same reinforcement as in the first method.

Method 3

- R = 3.266 MPa as before.
- Using design curves for $f_c = 20$ MPa and $f_y = 420$ MPa, corresponding to $R^c = 3.494$ MPa, the following steel ratio is obtained: $\rho \cong 0.0107$
- Almost the same reinforcement as in the first method.

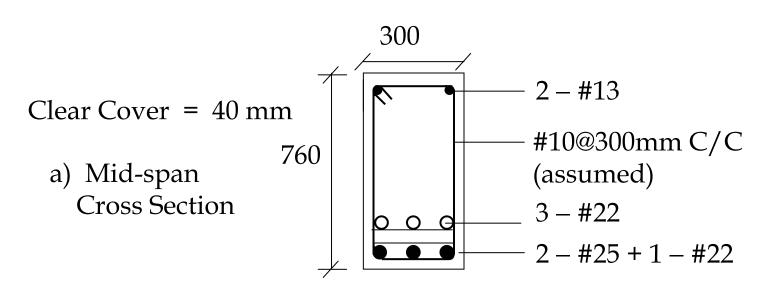
Trial 1: Assume a = d/3 = 760/3 = 253 mm

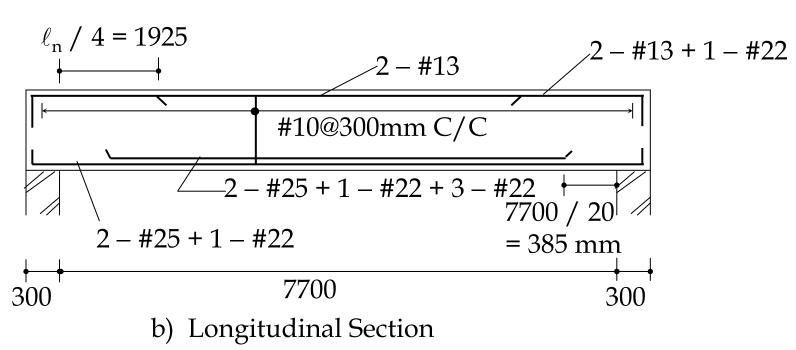


 $= 2528 \text{ mm}^2$

Trial 2:	
$a = \frac{A_s f_y}{0.85 f'_c b} = \frac{2528 \times 420}{0.85 \times 20 \times 300} = 208 \text{ mm}$	1
$A_s = \frac{M_u}{0.9 f_y \left(d - \frac{a}{2} \right)} = \frac{605.44 \times 10^6}{0.9 \times 420 \left(760 - \frac{208}{2} \right)} = 2442 \text{ mm}^2$) -
Trial 3:	
$a = \frac{2442 \times 420}{0.85 \times 20 \times 300} = 201 \text{ mm}$	
$A_s = \frac{605.44 \times 10^6}{0.9 \times 420 \left(760 - \frac{201}{2}\right)} = 2429 \text{ mm}^2$	
(aufficiently, close to the province approximate)	

(sufficiently close to the previous answer)





h = 910 mm d = 910 - 75 = 835 mmTrial 1: Assume a = d/3 = 835/3= 278 mm

$$A_{s} = \frac{M_{u}}{0.9 f_{y} \left(d - \frac{a}{2} \right)} = \frac{605.44 \times 10^{6}}{0.9 \times 420 \left(835 - \frac{278}{2} \right)}$$
$$= 2301 \text{ mm}^{2}$$

Trial 2:
$$a = \frac{A_s f_y}{0.85 f'_c b}$$

= $\frac{2301 \times 420}{0.85 \times 20 \times 300} = 190 \text{ mm}$
 $A_s = \frac{605.44 \times 10^6}{0.9 \times 420 \left(835 - \frac{190}{2}\right)} = 2164 \text{ mm}^2$

Trial 3: a = 178 mm $A_s = 2147 \text{ mm}^2$ (sufficiently close to the previous trial) The area of steel is provided by 5 #22 + 1 #19 give 2219 mm².

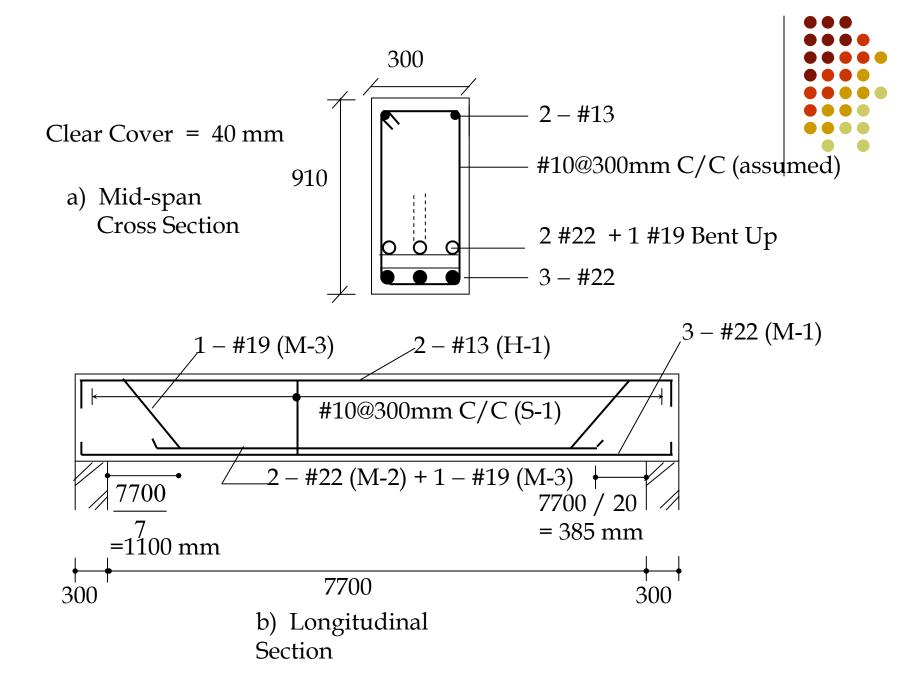
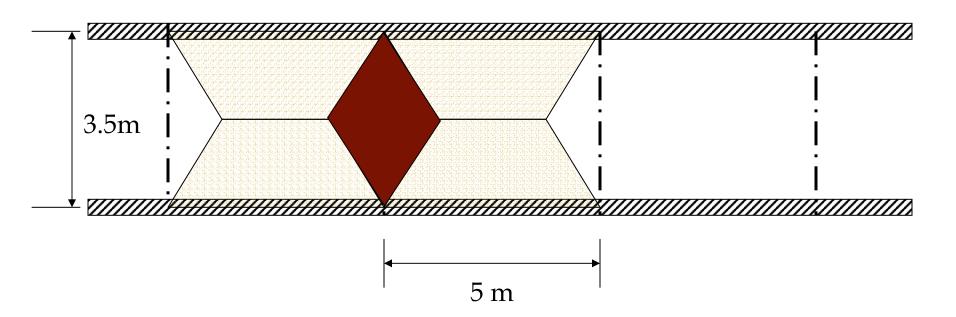


			Table	3.5. Ba	r Bending	Schedule	e. Ste	el Grade	: 420
S. Bar	No. Len.	Dia.		Weight Of Bars			Shape Of Bar		
No.	Desig- nation	Of Bars	Of Bar (m)	Of Bar	No. 10	No. 13	No. 19	No. 22	
1	M-1	3	8.200	#22				74.84	x 8200
2	M-2	2	6.930	#22				42.16	x 6930
4	M-3	1	9.500	#19			21.23		<u>↓</u> 5500 <u>↓</u> 744
5	H-1	2	8.434	#13		16.77			× 8200
6	S-1	27	2.420	#10	36.59				
				$\sum =$	38.5	17.6	22.3	122.9	
	I	I	I	Т	otal Steel	Required	l ≅ 202 kg	gs	I

Example:

Design a singly reinforced rectangular flexural member to be used as interior simply supported short beam. Slab panel is $5m \times 3.5m$. Factored slab load is 10 kN/m^2 . $f_c' = 17.25 \text{ MPa}$. $f_y = 300 \text{ MPa}$, b = 228mm, architectural depth = 375 mm.



- L = 3.5 m
- Factored slab load = 10.00 kN/m²
- $f_c' = 15 \text{ MPa}$
- $f_y = 300 \text{ MPa}$
- b = 228 mm
- *h_a* = 375 mm

Approximate Self Weight

- Service dead load = $2400 \times \frac{228}{1000} \times \frac{3.5}{12} \times \frac{9.81}{1000}$ = 1.57 kN/m
- Factored dead load = 1.2×1.57

= 1.88 kN/m

Equivalent Width Of Slab Supported By Beam B1

$$L_y = 5 \text{ m} : L_x = 3.5 \text{ m}$$

Equivalent slab width supported = $2/3 L_x$

 $= 2/3 \times 3.5 = 2.34$ m

Factored Slab Load Acting On Beam

- Factored slab load on beam
 - = width of slab × slab load per unit area
 - $= 2.34 \times 10.00 = 23.4 \text{ kN/m}$

Total Factored Load

Total Factored Bending Moment

•
$$M_u = \frac{w_u \ell^2}{8} = \frac{25.3 \times 3.5^2}{8} = 38.74 \text{ kN-m}$$

Minimum Effective Depth For Singly Reinforced Section

• $h_{min} = d_{min} + 60$ (assuming one layer of steel)

$$= \sqrt{\frac{M_u}{0.205 f_c' \times b}} + 60$$
$$= \sqrt{\frac{39.28.74 \times 10^6}{0.205 \times 17.25 \times 228}} + 60 = 279 \text{ mm}$$

Depth For Deflection Control

- Minimum depth of beam for deflection control $(h_{min}) = L/20$
 - = 3500 / 20 = 175 mm

Maximum Architectural Depth

• $h_{a,max}$ = 375 mm

Most General Depth

• h = L/12 = 3500/12 = 292 mm

• The depth may be selected in multiples of the brick height, if possible.

Selected Depth

• *h* = 300 mm

•
$$d = h - 60 = 240 \text{ mm}$$

Minimum Steel Ratio

$$\rho_{min} = 1.4 / f_{y} = 1.4 / 300 = 0.00467$$

Maximum Steel Ratio

$$\rho_{max} = 0.375 \times 0.85 \ \beta_1 \ \frac{f'_c}{f_y}$$

= 0.375 × 0.85 × 0.85 × $\frac{17.25}{300}$ = 0.0156

Calculation Of Steel

Trial 1: Assume a = d/3 = 240/3 = 80 mm

$$A_{s} = \frac{M_{u}}{0.9 f_{y} \left(d - \frac{a}{2} \right)}$$

$$= \frac{38.74 \times 10^{6}}{0.9 \times 300 \left(240 - \frac{80}{2} \right)} = 717 \text{ mm}^{2}$$
Trial 2: $a = \frac{A_{s} f_{y}}{0.85 f_{c}' b}$

$$= \frac{77 \times 300}{0.85 \times 17.25 \times 228} = 64 \text{ mm}$$

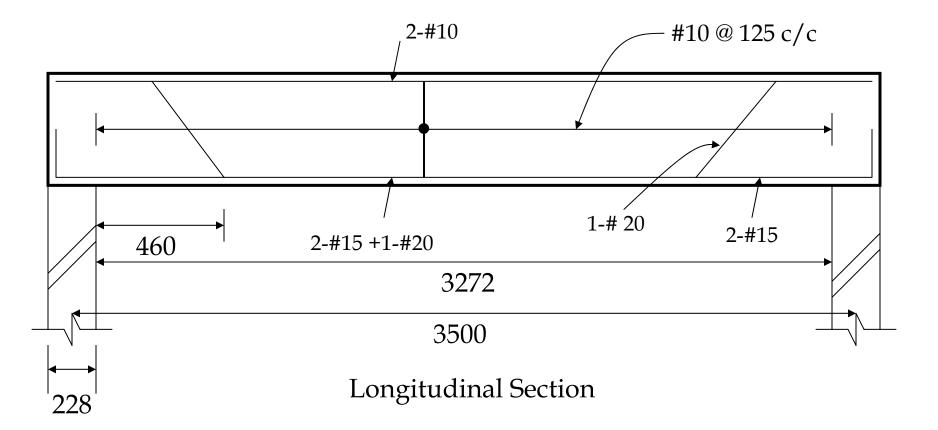
$$A_{s} = \frac{38.74 \times 10^{6}}{0.9 \times 300 \left(240 - \frac{64}{2} \right)} = 690 \text{ mm}^{2}$$

Trial 3:
$$a = \frac{690 \times 300}{0.85 \times 17.25 \times 228} = 62 \text{ mm}$$

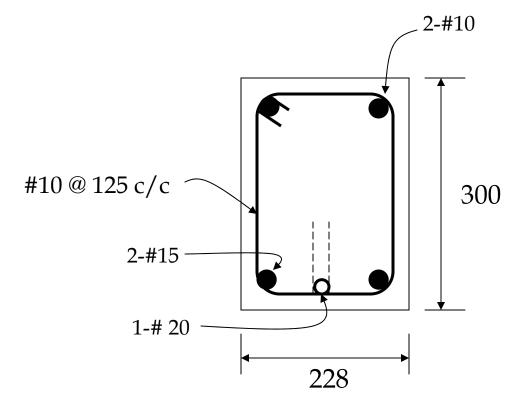
 $A_s = \frac{38.74 \times 10^6}{0.9 \times 300 \left(240 - \frac{62}{2}\right)} = 687 \text{ mm}^2$

(sufficiently close to the previous answer) A reinforcement of 2 #20 + 1 #15 provides the required area of steel

Detailing



Detailing



Mid-span Cross Section

Assignment Problems of Chapter No. 3